A New Positioning Filter: Phase Smoothing
in the Position Domain

THOMAS J. FORD and JASON HAMILTON
NovAtel Inc., Calgary, Canada

Received September 2002; Revised April 2003

ABSTRACT: Motivated by a requirement to provide real-time meter-level positioning of a NASCAR racing car, a mod-
ification of the standard Kalman filter was devised. This paper describes an approach that incorporates previous as
well as current position states in a Kalman filter to take advantage of phase measurements differenced over time. In
this formulation, the phase measurement difference is a measure of the difference in position in the line-of-sight direc-
tion to the satellite, so it can act as a relative position constraint of the current position with respect to the previous one.
The formulation of the delta-phase observation equation is described, as well as the modifications made to the Kalman
filter to incorporate it. An example used to illustrate the effectiveness of the delta-phase measurements in controlling
position error growth is included. Test results in various urban environments are presented.

INTRODUCTION

During the early days of GPS navigation, a filter
was designed that combined a series of delta-phase
and pseudorange measurements into a single noise-
reduced measurement [1]. While the noise on the
measurement used in the navigation solution was
reduced, the reduction of the effect of multipath was
not as great as had been hoped because of the biased
nature of the multipath signal on the pseudorange
[2]. At the same time, the time constant in the filter
had to be limited because the ionospheric phase
advance was a different sign than the pseudorange
ionospheric group delay error. Finally, the effective-
ness of the phase-smoothing technique was limited
because in a kinematic environment, frequent
signal outages occur, and every time this happened,
all of the smoothed pseudorange information was
lost, and the accuracy of the pseudorange reverted
back to its nominal unsmoothed level.

Differenced carrier measurements with their
associated ambiguities can be used to generate posi-
tion differences between receivers measuring the
same carrier at different locations. Ambiguity esti-
mates are required for this purpose, and deriving
these estimates involves time and redundant
signals, as well as measurements collected at a base
station. There are many examples of this procedure
[3, 4]. In an environment in which signals are
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continuously lost and reacquired, such as in
NASCAR racing, ambiguity resolution is often not
possible. Furthermore, in a racing environment, the
receiver on the cars sometimes tracks fewer than
four satellites, making it impossible to generate
a position at all without some supplementary means
and/or a predictive model. One method for generat-
ing the supplementary solution is with the use of
a velocity model. Delta-phase measurements can be
used to estimate average velocity [5]. This approach
helps maintain position accuracy when the constel-
lation drops below four satellites, and also helps
reduce the effect of pseudorange errors when the
number of satellites is four or more. But the delta-
phase measurement measures only average velocity,
so some assumptions about the system dynamics
must be made. This adds the requirement of addi-
tional system noise in the positioning filter, which
reduces its accuracy.

This paper describes a method for combining the
delta-phase measurement in a filter that includes
the current and previous positions (alluded to
in [6]). With both the current and previous positions
in the filter, a position difference can be derived
that is directly observable by the phase difference
measured between the previous and current time
epochs. The difference between the previous and
current positions is completely observable by four
phase differences or partially observable if fewer
than four satellites are continuously available. This
capability is in contrast to and improves upon
a position/velocity filter that uses delta phase as



a velocity estimator, because the delta phase is
explicitly treated as a position difference observable,
while no assumptions are made about the dynamics
of the vehicle. In [7], a delayed state filter is also
described that achieves the same effect by eliminat-
ing the previous position states from the state
vector; it does so by reworking the gains, measure-
ment covariance, and propagation equations to take
advantage of the correlation between process noise
and measurement noise that results when delta
phase is introduced as a position difference observa-
tion. The method in which the previous states are
maintained was selected because of its simplicity
and intuitiveness.

The advantage of this method over phase
smoothing is that, for the filter to make use of the
delta-phase measurement, it need only be avail-
able since the previous time epoch, rather than
over the last 50 s or so. Provided that some selec-
tion of four satellites is available over every epoch,
the position accuracy of the system can be main-
tained and improved. This is in contrast to the
phase-smoothing technique, in which the same
four satellites must be continuously tracked for
the position accuracy to be maintained and
improved by the same amount. In certain environ-
ments, various satellites are obstructed periodically.
In some cases, the minimum number of sat-
ellites may be available for a solution all the time,
but it is possible for the tracking duration for all
the satellites to be short. In this environment, car-
rier smoothing the pseudorange is of little help
because none of the individual satellites are
tracked long enough to reduce the variance for the
carrier-smoothed observations. Intuitively, enough
information should be available from delta carrier
measurements so that the epoch-to-epoch position
change can be determined to the level of the delta
carrier accuracy, provided at least four delta car-
rier measurements are available. It is in fact pos-
sible to account for all the vehicle dynamics with
delta carrier measurements in a least-squares
approach [8]. In this method, both the current and
previous positions are included as variables in
a least-squares adjustment. The idea in this paper
is to use the delta carrier measurements as
observables in a Kalman filter that incorporates
the current position, velocity, and possibly clock,
as well as the previous position.

The motivation for this filter approach came from
Sportvision, a customer of NovAtel Inc. They wanted
to have meter-level positioning accuracy (2 o) on
NASCAR racecars so they could provide real-time
computer graphics that followed the cars as they
went across the television screen. The navigation
difficulty in this problem was that better-than-
normal pseudorange positioning was required, but
the duration of the satellite constellation was too
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short for either fixed ambiguity positioning or accu-
rate floating ambiguity positioning. Although the
incorporation of track model data into the position
solution [9, 10] satisfied (to paraphrase Lincoln) the
positioning requirements on some of the tracks all of
the time and all of the tracks some of the time, it
could not satisfy the positioning requirements on all
of the tracks all of the time. The Kalman filter
approach, with current position, velocity, and clock
states, as well as the previous position state with
differential pseudorange and delta carrier measure-
ments as observations, satisfied the requirements to
the extent that the technology is used during nearly
every race.

During analysis of data collected in the urban
canyons of downtown Calgary, it became evident
that position errors from a filter that included
clock and clock rate estimates would be adversely
affected by clock and clock rate errors when the
system did not have enough observations to gener-
ate an instantaneous position and clock estimate.
As a result, the filter was modified so that clock
and clock rate parameters were not estimated.
Instead, pseudorange, Doppler, and delta-phase
measurements were all differenced across satel-
lites before they were used in the Kalman filter to
help estimate position and velocity.

In nondifferential mode, the accuracy of the
system is at the 1-2 m level when the geometry is
good and at the 5—10 m level in urban canyons. In
the same urban canyon environment, with a pseudo-
range-only solution using a least-squares technique,
the accuracy often degrades to the 100 m level, so
this approach shows a vast improvement over that
conventional method. Although no comparisons with
a position/velocity Kalman filter are made, it can be
said that this method was investigated, but did not
give in its unmodified form the results required at
the racetrack.

KALMAN FILTER FORMULATION

The Kalman filter is well documented (e.g.,
[11-13]). It consists of a propagation step and an
update step. The Kalman propagation reflects the
effects of dynamics over time on the state and of
dynamics and time-related uncertainties on the
state covariance. The update functions to combine
information in the state and its covariance with that
of external observations and their covariance, pro-
vided some functional relationship exists between
the state and the observations. The Kalman filter
equations are presented below for reference, along
with the specific definitions of the Kalman elements
to satisfy position and velocity estimation from GPS
observations. The filter element modifications that
incorporate the delta-phase measurements into the
filter are then described.
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Kalman Filter Equations

The specific Kalman filter definition varies with
the implementation. The specification of seven basic
elements defines the filter to the extent that it can
be implemented:

e x: state vector

e P: state covariance matrix

e ®: transition matrix (differential equation
solution)

® Q: process noise matrix (effect of incorrect
modeling over time)

e z: measurement vector

e R: measurement covariance matrix

e H: linear relationship of measurement to state

Following [11] or [12], the Kalman filter mechani-
zation can be specified as a sequence of state and
covariance propagation steps followed by one or
more update steps.

Propagation step:
State propagation: x,(—) = ®x,_;(+) (1a)

Covariance propagation:
P(-) = ®P,_(+H)®" + Q (1b)

Update step:

Gain computation: K = P(—) HT(HPHT + R)~! (1c)
State update: x(+) = x(—) + K(z — Hx(—)) (1d)
Covariance update: P(+) = (I — KH) P(—) (1e)

If a position/velocity filter is to be used, the state
vector will have six elements. The reference frame
used for the computation will be the earth-centered,
earth-fixed (ECEF) frame, so the state elements will be

State: x = [3x, 8y, 8z, dv,, dvy, dv,]

The elements are preceded by the 8 symbol to indi-
cate that they are error states, not system elements.
The covariance matrix associated with the pseudo-
range/delta-phase (PDP) implementation is initialized
as a diagonal 6 X 6 matrix with large diagonal
elements. The seed position for the system will be
provided by the least-squares process, so the position
error states can be assumed to have an initial vari-
ance of (100 m)?, and the velocity error states can be
assumed to have an initial variance of (100 m/s)2.

State initial covariance: P = [big diagonal
elements, 0 off diagonal elements]

This particular filter maintains only position and
velocity states. For the clock components of the sys-
tem to be eliminated, all pseudorange observations
are single differenced (across satellites) to eliminate
the common clock offset. All Doppler and delta-phase
measurements are also differenced to eliminate clock
rate. An example of a covariance matrix for four
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pseudorange difference observations generated by
differencing the first pseudorange with the other
four is shown below:

0'% + 0'% (r% 0'% 0'%
o? o? + o3 o? o?
R, = o? o? o3 + o3 o? 2)
0'% (r% 0'% 0'% + 0'%

The covariance matrix representing the differenced
observation set is nondiagonal to the extent that o7 is
large compared with any of 2 (for i # 1). As an imple-
mentation note, the phase double differences are not
processed as a group but serially, with the correlations
between differenced observations being ignored. The
effect of the error associated with this simplification is
reduced somewhat by choosing a high satellite as the
reference in the formation of the differences, because
a high satellite will have smaller noise, multipath, and
unmodeled atmospheric errors than will a low satel-
lite. Therefore, a covariance with a high satellite as
the reference will be closer to diagonal than one with
a low satellite as a reference.

The Kalman propagation is dependent on the solu-
tion of the differential equations describing the
dynamics of the state elements. This propagation con-
tains both deterministic and stochastic portions. Since
only position and velocity elements are estimated, the
following dynamics matrix describes the state error
growth under assumed constant velocity conditions:

x =Fx+ o (3)
[0 0 0 1 0 0]
000010
000O0O0 1
F_000000 @
000O0O0O
000O0O0O

That is, F is a 6 X 6 dynamics matrix with constant
coefficients, and w is a vector of white noise forcing
functions.

Since the F matrix has constant coefficients, the dif-
ferential equation solution can written as ®(At)
= e, For the F matrix in the random walk process
seen below, this becomes ®(At) = I + FAt, or

100 At 0 0
010 0 At O
001 0 0 At

‘I)_000100 )
000 0O 1 O
000 0 0 1
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The solution of the deterministic portion provides
a transition matrix, and the solution of the stochas-
tic portion provides a Q matrix. The process noise
matrix Q is based on the transition and the spectral
densities Q(7) of the random forcing functions
associated with the state according to the equation
below (following [14], for example):

At
Qucer = [ POQR)D(r)Tdr 6)
0

where Q(7) is a spectral density matrix for the random
forcing function vector for the state elements. In
general, the spectral densities for the state element
forcing functions are not known, and for this filter,
they will vary with the system dynamics. So the spec-
tral densities for position and velocity will be chosen
heuristically such that the propagated covariance
reflects the actual performance of the system. If the
theoretical advantage of a local-level spectral density
formulation is ignored, the Qgcgr derivation is simple,
and an analytic expression can be generated because
the quantity Q(7)vgy, gcrr 1S not position dependent.
In this case, Q(7)4iog is given by

Q(T)diag = (qp7 qpa qp7 Qv> Qv» qv) (7)

with g, being the common spectral density for all
the velocity elements.

Then the Qpcgr matrix is zero except for the
following elements:

Q11 = Qo2 = Q33 = At + q,At%3 (8a)
Qus = Q5 = Qg = qyAL (8b)
Qi = Qu1 = Qo5 = Qs2 = Q3 = Qp3 = q,AtY2 (8c)

Only the nonzero computed elements are applied to
the P matrix elements. The spectral density for the
velocity is derived from the cleaned Doppler misclo-
sures, so the filter is automatically adaptive to
changes in system dynamics. Similarly, the spectral
densities for position are derived from the delta-phase
innovations. That derivation is not central to the
description of this filter, so its details are not included.

KALMAN FILTER UPDATE

The linear relationship between the measure-
ments and the state is derived as a matrix of partial
derivatives of the functions that link the measure-
ments and the state elements. If such functions do
not exist, the state is not observable with the meas-
urement set. Once the linear relationship H
between the state and the measurement set has
been determined, the update process follows the
update step described earlier.

Finally, pseudorange and Doppler measure-
ments can be used to estimate the state elements.
A description of the pertinent linear relationships
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(H matrix) follows, first for pseudorange and
position, and then for Doppler as it relates to the
velocity states.

For the pseudorange difference between satellites i
and j and state, a linear relationship can be defined
based on the positions of the satellite and the receiver.
Assuming the single difference is defined as

Api = pl —p! 9)
H = [AX/R! — AX/RI, Ay/R! — Ay¥/Rj,
AZ/RiI — Azi/Ri, 0, 0, 0] (10)

where Ax' = x' — x,, the difference between the
x components of the i’th satellite and the receiver,
with similar expressions for the other difference
elements; and R = ((Ax)? + (Ay)? + (Az)2)2 repre-
sents the best estimate of the geometric range to the
satellite from the receiver.

The measurement that is most closely related to the
position in the filter is the reduced pseudorange, that
is, the measured pseudorange minus the theoretical
pseudorange. Inherent in this process, therefore, is the
presumption that a “system” is maintained with the
help of the Kalman filter that estimates error states or
corrections to the system. In the state update equation
using pseudorange differences, x(+) = K(z — Hx(—)),
z = Az, — Az, where Az, is the measured pseudo-
range difference, and Az is the pseudorange differ-
ence reconstructed by the system.

For the reduced Doppler difference measurement
from satellites i and j, the linear relationship H with
the velocity state is

H = [0, 0, 0, AX/Ri — AXY/R!, Ay/R' — Ay/R},
AZ/RI — AZYRY] (11)

A single reduced Doppler measurement is z,,4 = raw
Doppler — satellite clock rate — satellite motion
in the line-of-sight direction. The observation used
in the Kalman filter is just the difference of two
different reduced Doppler measurements. That is,
Z = Zpg — Znq. Now a misclosure or innovation, ‘w’,
for the Doppler measurement can be defined as

w =1z — Hx(—) (12)

MODIFICATION TO INCORPORATE
DELTA PHASE

The change in phase measurement over time can
provide an estimate of the change in the receiver
position over time in the direction of the satellite
generating the phase. This measurement would be
exact except that over time, changes in satellite posi-
tion, in tropospheric and ionospheric delay, and in the
receiver clock all occur. The measurement is also not
normally incorporated in a Kalman filter because the
Kalman filter states represent system errors at a par-
ticular time, while a delta-phase, or delta position
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measurement, represents an integrated velocity over
time. Thus incorporation of this measurement into
the Kalman filter, while attractive, involves some
difficulties that must be overcome.

The satellite motion can be accounted for based
on the user’s knowledge of the satellite orbit. The
residual errors in satellite motion resulting from
changes in the satellite position error from
ephemeris shortcomings are small compared with
the atmospheric error changes. The tropospheric
and ionospheric error changes are accounted for in
part in the error models associated with the meas-
urements and in part by the process noise applied
to the position in the propagation portion of the
Kalman filter. The clock rate component can be
eliminated by differencing delta-phase measure-
ments across satellites (effectively forming double-
difference measurements). By using a phase
measurement differenced twice across time and
satellites, the phase component generated by the
change in receiver clock can be eliminated. On this
basis, the observation equation relating the phase
and delta position is as follows.

The single-difference phase across time can be
modeled as

Agy = Hi(xy; — x49) + AClock (13)

where H is the vector HI = [— Ax/Ri, — Ayi/Rj,
—AZ/R}], and x,; — X, is the vector of position dif-
ferences between t; (the current time) and t; (the
previous time). The double-difference phase across
time and satellites is

VACPtmij = A‘szj - A‘Ptuzi =
VHU (th - th) (14)

where VHY is the vector
VHI = [AX/R' — AX/RI, Ay/R! — Ay//Rj,
AZYRI — AZ/RI (15)

The only problem with this formulation is that
VHI (x,; — X,(), requires that the position at t; and
the position at t, be available. That is, the state
must be expanded to include the position at the
last epoch.

The state is now defined as

x = [p1,v,pol” (16)

where the current position error vector is p; = [x,y,zl;
the current velocity error vector is v = [v,,v,,v,]; and
the previous position error vector is p, = [x,y,z].

The Kalman propagation must be modified not
only to support the previously defined dynamics
equations for the random walk model, but also to
transfer the p; elements to the p, spot in the state
vector during the propagation. That is, the current
position after the previous update becomes the
previous position after the propagation. At the
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same time, the current position error is propagated
according to the estimated velocity error. The modi-
fied transition matrix becomes

1 00 At 0 0 O O O
010 0 At 0 O0O0OO
001 0 O At 0 0O
000 1 0 0 O0O0O
=10 0 0 0 1 0 0 O O] (17
000 O O 1 0O00O0
100 0 0O O O0 OO
010 0 O O OOOPO
o001 0 0 0 00 0]

Then the update can be applied to an extended state
for observation VA5 with an H vector

Hi = [AX/R' — AX/RJ, Ay/R! — Ayi/Rj,
AZYR! — AZ/R), 0, 0, 0, — AX/R' + AxI/RJ,
—Ay/R! + Ay/R), — AZ/Ri + AZ/Ri] (18)
applied in the gain computation
K =PH"HPH" + R)! (19)

and the reduced double-difference phase observable
is applied to the state via the following update
equation:

x(+) = x(=) + K[VAgyp" —HY x(-)]  (20)

Note that x(—) and x(+) are a combination (sum) of
state (i.e., system errors) and system.

DELTA-PHASE THEORETICAL EXAMPLE

It is instructive to look at a simplified propagation
and update series for a reduced three-state filter
representing motion along a single axis. The states
consist of the previous and current positions on the
axis and the velocity along the axis.

Given the initial state

X = [pl;V’pO]T (21)

and associated covariance at time t;

0'12)1 0 0
P,=| 0 o2 0 (22)
O 0 0'1%0

the simplified transition matrix will be (substituting
t for At)

(23)

e

I
O =
(=
(=R el )
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The state propagation gives

1 t Oflp;
x(-)=®x(+)=|0 1 0||v|=
1 0 0
. (24)
p; ttv P2
A =|v
P1 | P1
and covariance propagation gives
0'}2)1 0 0
P(-)=®| 0 o2 0 |®P"+Q

o2+t + qpt +qt¥3 to? + qt¥2 ok

= to? + q,t¥2 o2 +q, 0
0'12)1 0 0'1:2)1

This formulation clearly generates a covariance
matrix with highly correlated position elements. In
fact, the P matrix remains positive definite only
because of the uncertainty in the velocity state and
the process noise added to the diagonal elements.
But a position (or pseudorange) update will affect
both the current and to a lesser extent previous
position states. Assume the phase measurement
geometry is such that all the phase information is
in the direction of the modeled axis. Then, the H
matrix for the phase observation is H = [1,0,—1].
If a single phase observation with a variance of ¢,?
is used in the update, R = 0,2, and an expression
for the gain can be written:

K = PH'[HPH" + R] !
t?%c? + gt + q,t%3
= to2 + q,t¥2
0

(26)

[(t%02 + qut + q,t*/3 + o)

The gain matrix for a small phase variance will be
close to 1.0 for the current position element. If there
is an error in velocity, say &,, then the error in posi-
tion will be &, = te,, and this error will be reflected
in the phase measurement depending on the accu-
racy of the phase observable and the geometry. In
this case the geometry is excellent, so the position
error is represented almost entirely by the phase
measurement (assume a phase noise increment of
M,). Therefore, during the phase update, the state
correction (assuming for simplicity that the previ-
ous state vector was zero) will be

x(+) = x(—) + K[—te, + m; —x(—)]

—te, + (27)

(—te, + M)(to? + q,t%2)

t2o? + gt + q,t¥3 + o?
0

=x(-) +
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Then, the system’s current position will be reduced
by almost the exact amount (te,) by which it was in
error. So if the geometry is good, and the error on the
phase is small, the relative position errors will be
nearly eliminated with the phase update. The vari-
ance of the position after the update reflects this.

The current position uncertainty during the
update is modified according to

P(+) = [I - KHIP(-) (28)
The position element of this matrix is
P(+)go
=02
+ t?%02 + qpt + q,t¥3 (29)

t2oZ + q,t + q,t%3
t202 + qpt + qt¥3 + o

— (t%02 + gyt + q,t%3)

which for a small phase variance reduces to
P(+)(0’0) = O-gl (30)

This is the position variance prior to the Kalman
propagation step. The conclusion to be drawn from
this example of a simplified system is that the delta-
phase measurement can be used with this technique
in a Kalman filter to compensate entirely for the
degradation in knowledge of position due to velocity
error or any other time-related source, provided the
phase is accurate enough, and the geometry relating
phase change to position change is strong enough.

TEST RESULTS

The results of incorporating the delta-phase meas-
urement can be seen by comparing the plots shown
in Figures 1-3. The first set shows some Crescent
Heights data, and the second and third show the
position improvement through downtown Calgary
with its associated urban canyon geography.

Crescent Heights is an older residential neigh-
borhood chosen for its mature tree coverage. The
coverage is seen in Figure 1, which shows the
number of pseudoranges. The poor coverage later
in the run corresponds to the more erratic position
results seen at the west side of the trajectory plots
that follow.

Now compare the least-squares trajectory with
the inertial control trajectory in Figure 2 and the
PDP trajectory in Figure 3. The inertial control was
generated by NovAtel’s inertial system [15], consist-
ing of the integration of an OEM4 receiver operating
in differential carrier mode and a Honeywell
HG1700-AG11 inertial measurement unit.

The PDP trajectory shows the output of the PDP
Kalman filter. The result is a much smoother and
more accurate trajectory. The filter is also able to
bridge through the portions of the test in which
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fewer than four satellites are in view. The maxi-
mum horizontal position error for this test has
been reduced by half—from over 40 m to approxi-
mately 20 m. The position availability percentage
has increased from 87 to 100 percent (see Tables 1
and 2).

In the urban canyon setting, improvements
are more evident. The photograph in Figure 4 and
the satellite availability plot in Figure 5 show the
tracking environment in the urban core. Not only
is the constellation masked, but the receiver
tracks a reflected rather than the direct signal
on occasion. Figure 5 shows that there are fewer
than four satellites available for a significant
proportion of the time.

Figure 6 shows least-squares—derived horizon-
tal positions in the downtown corridors. The least-
squares trajectory for the first downtown dataset
shows very noisy data and clearly demonstrates the
effect of unchecked multipath errors. Maximum hor-
izontal position error is approaching 600 m during
portions of this dataset.

The PDP trajectory in Figure 7 shows the results of
filtering the GPS observations. The solution availabil-

ity is much improved —to 99 percent (see Table 3). The
maximum horizontal position error has been reduced
from 600 m to 95 m. The position accuracy in the
north/south direction is significantly higher than that
in the east/west direction. Since this test is performed
primarily driving in east/west directions with high
buildings on the north and south of the vehicle, the
satellite geometry is such that the along-track direc-
tion (east/west) will be better constrained than the
across-track (north/south). The satellites in view will
be more or less in line with the vehicle’s along-track
direction, giving relatively good control over the along-
track accuracy, but relatively poor control over the
across-track accuracy. There is one reset in the trajec-
tory, which can be seen in the far westernmost portion
of the southern loop. When the filter propagates long
enough with no good updates, it will reset and wait for
a good least-squares solution to reinitialize. Although
the availability of the least-squares solution is 70 per-
cent in the data shown, the availability in the true
urban canyon (southern loop) was only 58 percent. The
PDP availability during this highly shaded portion
was 98 percent, and the horizontal root-mean-square
(RMS) error was 24.7 m (see Table 4).

Satellite Visibility
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Fig. 1-Crescent Heights Satellite Visibility
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Least Squares Trajectory
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Table 1—Crescent Heights Solution Availability

PDP Filter, No PDP Filter, All

Parameter Least Squares Propagated Solutions Solutions
Computed Solution 1,270 1,351 1,459
Epochs
Total Possible 1,459 1,459 1,459
% Achieved 87 93 100
Table 2— Crescent Heights Position Accuracy

Least PDP Filter, No Propagated PDP Filter, All
Parameter Squares (m) Solutions (m) Solutions (m)
Latitude Error RMS 3.814 2.799 2.788
Longitude Error RMS 1.784 0.760 0.786
Height Error RMS 13.721 12.509 12.508
2D Position Error RMS 4.210 2.900 2.896

Fig. 4-Urban Canyon (4th Avenue, Calgary, facing west)

Results for another dataset for downtown Calgary
are shown in Tables 5—6 and Figure 8. The line
shows inertial control, while the dots show single-
point GPS using a least-squares process with only
pseudorange inputs. Compare that with Figure 9,
which shows the plot of the trajectory of horizontal
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positions generated with a Kalman filter using
pseudorange, Doppler, and delta-phase measure-
ments as inputs.

The PDP trajectory plot in Figure 9 shows the
improvement in solution availability. The amount of
time a solution is not available is reduced from over
20 percent to only 5 percent. The position spikes
from multipath have also been reduced. There are
some small deviations from the control solution dur-
ing periods when few (<4) satellites are available
for extended periods of time. There is also one reset
of the PDP filter in this data.

CONCLUSIONS

The following conclusions have been generated by
this work:

e Delta-phase measurements can be used with this
technique in a Kalman filter to compensate for
the degradation in knowledge of position due to
velocity error or any other time-related source, to
the extent that the delta carrier measurements
from various satellites are known, and provided
the geometry relating phase change to position
change is strong enough.
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Fig. 5-Urban Canyon Satellite Visibility
Table 3—Urban Canyon Solution Availability
PDP Filter, No PDP Filter, All
Parameter Least Squares Propagated Solutions Solutions
Computed Solution 5,021 6,639 7,103
Epochs
Total Possible 7,180 7,180 7,180
% Achieved 70 92 99
Table 4—Urban Canyon Position Accuracy
Least PDP Filter, No Propagated PDP Filter, All
Parameter Squares (m) Solutions (m) Solutions (m)
Latitude Error RMS 58.359 19.181 19.632
Longitude Error RMS 26.443 4.354 4.454
Height Error RMS 42.038 24.206 26.218
2D Position Error RMS 64.070 19.669 20.130
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Fig. 6-Urban Canyon Least-Squares Overplot of Inertial Trajectory
Table 5—Urban Canyon Solution Availability
PDP Filter, PDP Filter,
Parameter Least Squares  No Propagated Solutions  All Solutions
Computed Solution 12,280 14,412 14,749
Epochs
Total Possible 15,500 15,500 15,500
% Achieved 79 93 95
Table 6—Urban Canyon Position Accuracy
Least PDP Filter, No Propagated PDP Filter,
Parameter Squares (m) Solutions (m) All Solutions (m)
Latitude Error RMS 5.988 5.017 5.457
Longitude Error RMS 4.829 2.732 2.786
Height Error RMS 10.737 6.303 6.490
2D Position Error RMS 7.693 5.713 6.127
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e The advantage of phase smoothing in the
positioning domain over phase smoothing in
the range domain is that phase-smoothed
pseudoranges require continuous tracking of
a single observation to contribute effectively
to the solution. In the implementation
described here, the various statellites can lose
lock and be reacquired without significant
loss in performance provided at least four
satellites (they need not be the same ones) are
maintained across the delta time between
epochs.

e This method has been shown to improve posi-
tioning availability in established residential
neighborhoods by over 10 percent and in urban
canyon settings by 40 percent.

e This method has improved single-point horizon-
tal accuracy from 4 m (2 dRMS) to 3 m (2 dRMS)
in residential neighborhoods. In urban canyon
settings, accuracy has improved significantly,
from 64 m (2 dRMS) to 20 m (2 dRMS) in one
test and from 7.6 m (2 dRMS) to 6.0 m (2 dRMS)
in another.

e The single-differenced pseudoranges have sig-
nificant correlation with one another as a result
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of the common errors on all observations arising
from the reference satellite common to all.
Performing the update as a single batch update
with a fully populated pseudorange covariance
matrix eliminates this issue.

e The correlation also exists for the phase meas-
urements. Its effect is limited by using the
highest satellite as a reference (see the dis-
cussion of equation (2) above), but investiga-
tions should be conducted to determine
whether the performance could be improved
by processing the delta-phase observations in
a batch manner.
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Fig. 8- Urban Canyon Least-Squares Overplot of Inertial Trajectory
FINAL NOTE Proceedings of ION GPS-94, Salt Lake City, UT,

The initial development took place because
Sportvision brought us a set of racing environ-
ment requirements. The happy ending to that
story is that the technology has been deployed
successfully by Sportvision, and the results can be
seen during televised NASCAR races on either
FOX or NBC. Figure 10 shows a sample of the
video image from FOX.

Based on a paper presented at The Institute of Naviga-
tion’s ION GPS-2002, Portland, Oregon, September
2002.
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