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ABSTRACT 
 
During the early days of GPS navigation, Ron Hatch at 
Magnavox designed a filter that combined delta phase 
measurements and pseudoranges into a single noise 
reduced measurement. While reducing the noise on the 
measurement used in the navigation solution, the 
reduction of the effect of multipath was not as much as 
was hoped because of the biased nature of the multipath 
signal on the pseudorange. At the same time, the time 
constant in the filter had to be limited because the 
ionospheric phase advance was a different sign than the 
pseudorange ionospheric group delay error. Finally, the 
effectiveness of the phase smoothing technique was 
limited because in a kinematic environment, frequent 
signal outages occur and every time this happened all of 
the smoothed pseudorange information was lost and the 

accuracy of the pseudorange reverted back to its nominal 
unsmoothed level. 
 
In a differential system position, precision can be improved 
through the use of the phase ambiguity, which allows the 
receiver to treat the carrier measurement as a range with ever 
better precision. This can eventually provide a receiver with 
a position accuracy at the centimetre level, provided the 
differential base station is close enough to the receiver. If 
satellites tracking is interrupted, the position precision in 
particular directions (depending on the locations of the 
satellites) can be maintained via the ambiguities of the 
satellites the system continues to track.  
 
In a non-differential system, delta phase measurements in 
conjunction with a velocity model can be used to help 
estimate average velocity that can help maintain position 
accuracy when the constellation drops below 4 satellites, and 
to help reduce the effect of pseudorange errors when the 
number of satellites is 4 or more. But the delta phase 
measurement only measures average velocity, so some 
assumptions about the system dynamics has to be made and 
this adds the requirement of additional system noise in the 
positioning filter which reduces its accuracy. 
 
This paper describes a method for combining the delta phase 
measurement in a filter which includes the current and the 
previous position. With both the current and previous 
position in the filter, a position difference can be formed 
which is directly observable by the phase difference 
measured between the previous and current time epochs. The 
previous and current position difference is completely 
observable by four phase differences or partially observable 
if less than three satellites are continuously available. The 
advantage of this method over phase smoothing is that in 
order for the filter to make use of the delta phase 
measurement, it only needs to be available since the previous 
time epoch, rather than over the last 50 seconds or so. 
Provided that some selection of 4 satellites are available over 
every epoch, the position accuracy of the system can be 



maintained and improved. This is in contrast to the phase 
smoothing technique in which the same four satellites 
must be continuously tracked in order for the position 
accuracy to be maintained and improved by the same 
amount. The advantage of this method over a differential 
process is that it does not need any base station 
infrastructure and is simpler than typical RTK 
algorithms. The accuracy of the system is at the 1 to 2 
metre level when the geometry is good and at the 5 to 10 
metre level in urban canyons. In the same urban canyon 
environment, a pseudorange only solution using a least 
squares technique, the accuracy often degrades to the 100 
metre level, so this approach shows a vast improvement 
over conventional methods.  
 
Over the past year, NovAtel Inc. has developed a new 
filter which uses delta phase measurements as inputs to a 
filter that maintains both the current and previous 
position to drastically improve the positioning accuracy 
in areas where the sky is partially or intermittently 
obscured. In this paper the positioning algorithm is 
described and test results showing the positioning 
improvement over conventional least squares is 
presented. Results from both inner city (old growth 
forest) residential neighbourhoods and urban canyons are 
shown. 
 
INTRODUCTION 
 
An observation equation links pseudorange and position 
via the geometrical information provided by the satellite 
in its orbital data. A large portion of the change in 
pseudorange related to the geometrical change in the 
satellite’s position is largely represented by the change in 
the carrier measurement from the satellite to the receiver, 
provided the carrier signal has been continuously tracked 
at the receiver.  Combining these can reduce the noise on 
the pseudorange measurement significantly, so at first 
glance, the combination of pseudorange and carrier 
measurements to generate an enhanced pseudorange 
measurement is an attractive method. However, the 
refined measurement has three conditions which limit its 
usefulness. First, the ionospheric phase advance is equal 
and opposite to the ionospheric group delay, so over time 
the change in pseudorange deviates from the change in 
carrier according to the ionospheric change.  Secondly, 
pseudorange errors corrupted by multipath are biased [6], 
so the combined pseudorange carrier measurement error 
is difficult to estimate as it is a function of the multipath 
environment. Finally, the noise on the refined 
pseudorange takes time to be reduced. A reduction of the 
noise by a factor of 10 will take 100 seconds of 
continuous phase tracking, and often carrier tracking is 
interrupted on individual satellites more frequently than 
this, so the carrier smoothed pseudorange never reaches 
steady state. 
 

In some environments, various satellites are obstructed 
periodically. In some cases, the minimum number of 
satellites may be available for a solution all the time, but it is 
possible that the tracking duration for all the satellites is 
short. In this environment, carrier smoothing the 
pseudoranges does not help much because none of the 
individual satellites are tracked long enough to reduce the 
variance for the carrier smoothed observations. Intuitively, 
enough information should be available from delta carrier 
measurements so that the epoch to epoch position change 
should be determined to the level of the delta carrier 
accuracy, provided at least 4 delta carrier measurements are 
available. It is in fact possible to account for all the vehicle 
dynamics with delta carrier measurements in a least squares 
approach [5]. In this method, both the current and previous 
positions are included as variables in a least squares 
adjustment. The idea in this paper is to use the delta carrier 
measurements as observables in a Kalman filter which 
incorporates the current position, velocity and possibly clock 
as well as the previous position. 
 
The motivation for the new filter approach came from 
Sportvision, a customer of NovAtel Inc. They wanted to 
have meter level positioning accuracy (2 sigma) on 
NASCAR race cars so they could provide real time computer 
graphics that followed the racecars as they went across the 
television screen. The navigation difficulty in this problem 
was that better than normal pseudorange positioning was 
required, but the duration of the satellite constellation was 
too short for either fixed ambiguity positioning or accurate 
floating ambiguity positioning. Although the incorporation 
of track model data into the position solution [6][7] satisfied 
(to paraphrase Lincoln), the positioning requirements on 
some of the tracks all of the time and all of the tracks some 
of the time, it couldn’t satisfy the positioning requirements 
on all of the tracks all of the time. The Kalman filter 
approach, with current position, velocity and clock states, as 
well as the previous position state with differential 
pseudorange and delta carrier measurements as observations 
satisfied the requirements to the extent that the technology is 
used during nearly every race.  
 
During analysis of data collected in the urban canyons in 
downtown Calgary, it became evident that position errors 
from a filter that included clock and clock rate estimates 
would be adversely affected by clock and clock rate errors 
when the system did not have enough observations to 
generate an instantaneous position and clock estimate. As a 
result, the filter was modified so that clock and clock rate 
parameters were not estimated. Instead, pseudorange, 
doppler and delta phase measurements were all differenced 
across satellites before they were used in the Kalman filter to 
help estimate position and velocity  
 



KALMAN FILTER FORMULATION 
 
The Kalman filter is well documented in references like 
[1][2][3] consists of a propagation step and an update 
step. The Kalman propagation reflects the effect of 
dynamics over time on the state and of dynamics and 
time related uncertainties on the state covariance. The 
update functions to combine information in the state and 
its covariance with that of external observations and their 
covariance, provided some functional relationship exists 
between the state and the observations. The Kalman filter 
equations are copied out for reference, along with the 
specific definitions of the Kalman elements to satisfy 
position and velocity estimation from GPS observations. 
Then the filter element modifications are described which 
incorporate the delta phase measurements into the filter. 
 
KALMAN EQUATIONS 
 
The specific Kalman filter definition varies with the 
implementation. The specification of 7 basic elements 
define the filter to the extent that it can be implemented.  
 
1) x: State vector 
2) P: State Covariance matrix 
3) Φ: Transition matrix (differential equation solution) 
4) Q: Process noise matrix (effect of incorrect 

modelling over time) 
5) z: Measurement vector  
6) R: Measurement Covariance matrix  
7) H: Linear Relationship of measurement to state 
 
Following [1] or [2], the Kalman filter mechanisation can 
be specified as a sequence of state and covariance 
propagation steps followed by one or more update steps. 
 
Propagation step: 
State propagation:  xt(-) = Φxt-1(+) 
Covariance propagation: Pt(-) = ΦPt-1(+)ΦT + Q 
 
Update Step: 
Gain computation: K = P(-)HT(HPHT + R)-1 
State Update: x(+)  =  x(-) + K(z – Hx(-)) 
Covariance Update: P(+) = (I – KH) P(-) 
 
If a position/velocity filter is to be used, the state vector 
will have 6 elements. The reference frame used for the 
computation will be the ECEF frame, so the state 
elements will be: 
 
State: x=[δx, δy, δz, δvx, δvy, δvz] 
The elements are preceded by the δ symbol to indicate 
they are error states, not system elements.  
 
The covariance matrix associated with the 
pseudorange/delta phase (PDP) implementation is 
initialised as diagonal 6 by 6 matrix with large diagonal 

elements. The seed position for the system will be provided 
by the least squares process, so the position error states can 
be assumed to have an initial variance of (100 metres)2, and 
the velocity error states can be assumed have an initial 
variance of (100 metres/sec)2.  
 
State Initial Covariance: P= [big diagonal elements, 0 off 
diagonal elements] 
 
This particular filter maintains only position and velocity 
states. In order for the clock components of the system to be 
eliminated, all pseudorange observations are single 
differenced (across satellites) to eliminate the common clock 
offset. All doppler and delta phase measurements are also 
differenced to eliminate clock rate. The Kalman propagation 
is dependent on the solution of the differential equations 
describing the dynamics of the state elements. This contains 
both deterministic and stochastic portions. Since only 
position and velocity elements are estimated, the following 
dynamics matrix described the state error growth under 
assumed constant velocity conditions.  
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That is, F is a 6 by 6 dynamics matrix with constant 
coefficients and w is a vector of white noise forcing 
functions.  
 
Since the F matrix has constant coefficients, the differential 
equation solution can written as Φ(∆t) = eF∆t 
and for the F matrix in the random walk process seen below, 
this becomes Φ(∆t)  = I + F∆t  or: 
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The solution of the deterministic portion provides a 
transition matrix, and the solution of the stochastic portion 
provides a Q matrix. The process noise matrix Q is based on 



the transition and the spectral densities Q(τ) of the 
random forcing functions associated with the state 
according to the equation (following [8] for example). 
 

QECEF = ∫
∆

ΦΦ
t

T dQ
0

)()()( ττττ   

 
Where Q(τ) is a spectral density matrix for the random 
forcing function vector for the state elements. In general 
the spectral densities for the state element forcing 
functions are not known, and for this filter these will vary 
with the system dynamics. So the spectral densities for 
the position and velocity will be chosen heuristically such 
that the propagated covariance reflects the actual 
performance of the system. If the theoretical advantage of 
a local level spectral density formulation is ignored, the 
QECEF derivation is simple and an analytic expression can 
be generated because the quantity Q(τ)VEL_ECEF  is not 
position dependent. In this case, the Q(τ)diag is given by: 
 
Q(τ)diag = (qp, qp, qp, qv, qv, qv)  
 
With qv being the common spectral density for all the 
velocity elements. 
  
Then the QECEF matrix is zero except for the following 
elements: 
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Only the non-zero computed elements are applied to the 
P matrix elements. The spectral density for the velocity is 
derived from the cleaned doppler misclosures, so the 
filter is automatically adaptive to changes in system 
dynamics.  Similarly, the spectral densities for position 
are derived from the delta phase innovations. 
  
KALMAN UPDATE 
 
The linear relationship between the measurements and 
the state are derived as a matrix of partial derivatives of 
the functions which link the measurements and the state 
elements. If such functions don’t exist, then the state is 
not observable with the measurement set. Once the linear 
relationship “H” between the state and the measurement 
set is determined, the update process follows the update 
step describe earlier.  
 
Finally, pseudorange and doppler measurements can be 
used to estimate the state elements. The description of the 
pertinent linear relationships (H matrix) follows, first for 

pseudorange and position, and then for doppler as it relates 
to the velocity states. 
 
For the pseudorange difference between satellites i and j and 
state, a linear relationship can be defined based on the 
positions of the satellite and the receiver. Assuming the 
single difference is defined as: 
 
∆ρ ij = ρ j - ρ i 
 
H = [∆xi/Ri -∆xj/Rj, ∆yi/Ri -∆yj/Rj, ∆zi/Ri -∆zj/Rj, 0, 0, 0] 
 
Where 
∆xi = xi – xr, the difference between the x components of the 
ith satellite and the receiver, with similar expressions for the 
other difference elements, and 
Ri = ((∆xi )2 + (∆yi)2 + (∆zi)2)1/2 represents the best estimate 
of the geometric range to the satellite from the receiver. 
  
The measurement which is most closely related to the 
position in the filter is the reduced pseudorange, that is, the 
measured pseudorange minus the theoretical pseudorange. 
So inherent in this process is the presumption that a 
“system” is maintained with the help of the Kalman filter 
which in fact estimates error states or corrections to the 
system.  
In the state update equation using pseudorange differences: 
x(+)  = K(z – Hx(-)), z = ∆zm - ∆zs 
Where ∆zm is the measured pseudorange difference and ∆zs 
is the pseudorange difference reconstructed by the system.  
 
For the reduced doppler difference measurement from 
satellites i and j, the linear relationship “H” with the velocity 
state is:  
H = [0,0,0,∆xj/Rj - ∆xi/Ri, ∆yj/Rj - ∆yi/Ri, ∆zj/Rj - ∆zi/Ri] 
 
A single reduced doppler measurement is zmd = Raw 
Doppler –  Satellite clock rate  –  Satellite motion in the line 
of sight direction. The observation used in the Kalman filter 
is just the difference of two different reduced doppler 
measurements. That is z = zmd j - zmd

i 
 
So now a misclosure or innovation, “w” for the doppler 
measurement can be defined as  
 
w = z – Hx(-) 
 
MODIFICATION TO INCORPORATE DELTA 
PHASE 
 
The change in phase measurement over time can provide an 
estimate of the change in the receiver position over time in 
the direction of the satellite generating the phase. This 
measurement would be exact except that over time, changes 
in satellite position, changes in tropospheric and ionospheric 
delay and changes in the receiver clock all occur. The 



measurement is also not normally incorporated in a 
Kalman filter because the Kalman filter states represent 
system errors at a particular time, while a delta phase or 
delta position measurement represent an integrated 
velocity over time. So incorporation of this measurement 
into the Kalman filter, while attractive, has some 
difficulties which must be overcome. 
 
The satellite motion can be accounted for based on the 
user’s knowledge of the satellite orbit. The residual error 
in satellite motion resulting from changes in the satellite 
position error from ephemeris shortcomings are small 
compared to the atmospheric error changes. The 
tropospheric and ionospheric error changes are partly 
accounted for in the error models associated with the 
measurements, and partly by the process noise applied to 
the position in the propagation portion of the Kalman 
filter. The clock rate component can be eliminated by 
differencing delta phase measurements across satellites 
(effectively forming double difference measurements). 
By using a phase measurement differenced twice across 
time and satellites, the phase component generated by the 
change in receiver clock can be eliminated. Based on 
this, the observation equation relating the phase and delta 
position is as follows: 
 
The single difference phase across time can be modelled 
as: 
∆ϕt1t2

j = Hj (xt1 – xt0) + ∆Clock 
 
Where H is the vector Hj = [-∆xj/Rj, -∆yj/Rj, -∆zj/Rj] 
 
and xt1 – xt0 is the vector of position differences between 
t1 (the current time) and t0 (the previous time). 
The double difference phase across time and satellites is: 
 
∇∆ϕt1t2

ij = ∆ϕt1t2
j - ∆ϕt1t2

i = ∇Hij (xt2 – xt1) 
 
Where ∇Hij is the vector  
∇Hij = [∆xi/Ri -∆xj/Rj, ∆yi/Ri -∆yj/Rj, ∆zi/Ri -∆zj/Rj] 
 
The only problem with this formulation is that ∇Hij (xt1 – 
xt0), requires that the position at t1 and the position at t0 
are available.  That is, the state must be expanded to 
include the position at the last epoch. 
 
The state is now defined as x = [p1,v,p0]T where  
Current position error vector: p1  = [x,y,z] 
Current velocity error vector: v = [vx,vy,vz] 
Previous position error vector: p0 = [x,y,z] 
 
The Kalman propagation must be modified to not only 
support the previously defined dynamics equations for 
the random walk model, but also to transfer the p1 
elements to the p0 spot in the state vector during the 
propagation. That is, the current position after the 
previous update becomes the previous position after the 

propagation. At the same time, the current position error is 
propagated according to the estimated velocity error. The 
modified transition matrix becomes: 
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Then the update can be applied to an extended state for 
observation ∇∆ϕt1t2

ij with an H vector 
 
Hij = [∆xi/Ri -∆xj/Rj, ∆yi/Ri -∆yj/Rj, ∆zi/Ri -∆zj/Rj, 0, 0, 0, -
∆xi/Ri +∆xj/Rj, -∆yi/Ri +∆yj/Rj, -∆zi/Ri +∆zj/Rj] 
 
applied in the gain computation 
 
K = PHT(HPHT+R)-1 
 
and the reduced double difference phase observable is 
applied to the state via the following update equation: 
 
x(+) = x(-) + K [∇∆ϕt1t2

ij - Hij x(-)] 
 
Note that x(-) and x(+) are a combination (sum) of state (ie 
system errors) and system.  
 
DELTA PHASE THEORETICAL EXAMPLE: 
 
It is instructive to look at a simplified propagation and 
update series for a reduced three state filter representing 
motion along a single axis. The states consist of the previous 
and current positions on the axis and the velocity along the 
axis.  
 
Given the initial state  
x = [p1,v,p0]T 
 
and associated covariance at time t1 
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The simplified transition matrix will be (substituting t for 
∆t) 
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The state propagation gives  
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and covariance propagation gives 
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This clearly generates a covariance matrix with highly 
correlated position elements. In fact, the P matrix remains 
positive definite only because of the uncertainty in the 
velocity state and the process noise added to the diagonal 
elements. But a position (or pseudorange) update will 
affect both the current and to a lesser extent previous 
position states. Assume the phase measurement geometry 
is such that all the phase information is in the direction of 
the modelled axis. Then, the H matrix for the phase 
observation is H = [1,0,-1]. If a single phase observation 
with a variance of σϕ

2 is used in the update, R = σϕ
2 and 

an expression for the gain can be written: 
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The gain matrix, for a small phase variance will be close 
to 1.0 for the current position element, close to 1.0/t for 
the velocity element, and close to 0.0 for the previous 
position element. If there is an error in velocity, say εv, 
then the error in position will be εp = tεv, and this will be 

reflected in the phase measurement to the extent of the 
accuracy of the phase observable and the geometry. In this 
case the geometry is excellent, so the position error is almost 
entirely represented by the phase measurement (assume a 
phase noise increment of ηϕ). Therefore, during the phase 
update, the position correction (assuming for simplicity that 
the previous state vector was zero) will be  
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Then, the system’s current position will be reduced by 
almost the exact amount (tεv ) by which it was in error, and 
the velocity will be reduced by εv, the amount by which it 
was in error. So if the geometry is good, and the error on the 
phase is small, the relative position and velocity errors will 
be almost eliminated with the phase update.  
 
The current position uncertainty during the update is 
modified according to: 
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which for a small phase variance reduces to: 
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eliminating not only the effect of velocity error over time on 
the current position, but also the effect of system noise on 
the current position.  
 
Similarly, the effect of reported velocity error is shown to 
be:  
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which for small phase noise and small velocity system noise, 
relative to the velocity uncertainty, reduces to: 

vqP =+ )1,1()(  

The conclusion to be drawn from this example of a 
simplified system is that the delta phase measurement can be 
used with this technique in a Kalman filter to completely 
compensate for the degradation in knowledge of position 
from velocity error or any other time related source, 
provided the phase is accurate enough, and provided the 
geometry relating phase change to position change is strong 
enough. 
 



TEST RESULTS 
 
The results of the incorporation of the delta phase 
measurement can be seen by comparing the three sets of 
plots shown below. The first set shows some Crescent 
Heights data, and the second and third show the position 
improvement through downtown Calgary with its 
associated urban canyon geography.  

 
Crescent Heights is an older residential neighbourhood 
chosen for its mature tree coverage. The coverage is seen in 
the following plot. Shown are the number of pseudoranges. 
The poor coverage later in the run corresponds to the more 
erratic position results seen in the west side of the trajectory 
plots that follow. 

 

 
 
Now compare the least squares trajectory to the inertial control trajectory and the plot following this showing the PDP 
trajectory. 
 

 



 
 
The PDP trajectory shows the output of the PDP Kalman filter.  The result is a much smoother and accurate trajectory.  The 
filter is also able to bridge through the portions of the test where there are fewer than four satellites in view.  The maximum 
horizontal position error for this test has been reduced by half from over 40m to approximately 20m. The position availability 
percentage has increased from 87% to 100%. 
 
Solution Availability 

 Least 
Squares 

PDP Filter, No Propagated 
Solutions 

PDP Filter, All 
Solutions 

Computed Solution Epochs 1270 1351 1459 
Total Possible 1459 1459 1459 
% Achieved 87 93 100 

 
Position Accuracy 

 Least 
Squares 

PDP Filter, No Propagated 
Solutions 

PDP Filter, All 
Solutions 

Latitude Error RMS 3.814 2.799 2.788 
Longitude Error RMS 1.784 0.760 0.786 
Height Error RMS 13.721 12.509 12.508 
2D Position Error RMS 4.210 2.900 2.896 

 
 
In the urban canyon setting, improvements are more evident.  The following photograph  and satellite availability plot show 
the tracking environment in the urban core. Not only is the constellation masked, but often the receiver tracks a reflected rather 
than the direct signal.   
 



 
 
The satellite visibility plot shows that a significant proportion of the time there are fewer than four satellites available.  
 

 
 
The next plot shows least squares derived horizontal positions in the downtown corridors.  



 
 
The least squares trajectory for the first downtown data set shows very noisy data and clearly demonstrates the effect of 
unchecked multipath errors.  Maximum horizontal position error is approaching 600m during portions of this data set.  
 

 
 
The PDP trajectory shows the results of filtering the GPS observations.  The solution availability is much improved to 99%. 
The maximum horizontal position error has been reduced from 600m to 95m.  The position accuracy in the North/South 



direction is significantly higher than the component in the East/West direction.  Since this test is primarily performed driving 
in East/West directions with high buildings on the North and South of the vehicle the satellite geometry is such that the along 
track direction (E/W) will be better constrained than the across track (N/S).  The satellites in view will be more or less in line 
with the vehicle’s along track direction giving relatively good control over the along track accuracy, but relatively poor control 
over the across track accuracy.  There is one reset in the trajectory, which can be seen in the far western most portion of the 
southern loop.  When the filter propagates without any good updates for long enough, it will reset and wait for a good least-
squares solution to re-initialize.  Although the availability of the least squares solution was 70% in the data shown, the 
availability in the true urban canyon (southern loop) was only 58%. The PDP availability during this highly shaded portion 
was 98%, and the horizontal RMS error was 24.7 metres.  
 
Solution Availability 

 Least 
Squares 

PDP Filter, No 
Propagated Solutions 

PDP Filter, All Solutions 

Computed Solution Epochs 5021 6639 7103 
Total Possible 7180 7180 7180 
% Achieved 70 92 99 

 
Position Accuracy 

 Least 
Squares 

PDP Filter, No 
Propagated Solutions 

PDP Filter, All Solutions 

Latitude Error RMS 58.359 19.181 19.632 
Longitude Error RMS 26.443 4.354 4.454 
Height Error RMS 42.038 24.206 26.218 
2D Position Error RMS 64.070 19.669 20.130 

 
Another data set for downtown Calgary is shown in the following: 

 
 
The red line shows inertial control, the blue dots show single point GPS using a least squares process with only pseudorange 
inputs. Compare that to the following plot of the trajectory of horizontal positions generated with a Kalman filter using 
pseeudorange, doppler and delta phase measurements as inputs. 



  
 
The PDP trajectory plot shows the improvement in solution availability.  The amount of time that a solution is not available is 
reduced from over 20% to only 5%.  The position spikes from multipath have also been reduced.  There are some small 
deviations from the control solution during periods when few (<4) satellites are available for extended periods of time.  There 
is also one reset of the PDP filter in this data.   
 
Solution Availability 

 Least 
Squares 

PDP Filter, No 
Propagated Solutions 

PDP Filter, All Solutions 

Computed Solution Epochs 12280 14412 14749 
Total Possible 15500 15500 15500 
% Achieved 79 93 95 

 
Position Accuracy 

 Least 
Squares 

PDP Filter, No 
Propagated Solutions 

PDP Filter, All Solutions 

Latitude Error RMS 5.988 5.0172 5.4572 
Longitude Error RMS 4.829 2.7322 2.7859 
Height Error RMS 10.737 6.3030 6.4904 
2D Position Error RMS 7.693 5.7129 6.1272 

 
 
OBSERVATIONS AND CONCLUSIONS: 
 
1) The delta phase measurement can be used with this 

technique in a Kalman filter to compensate for the 
degradation in knowledge of position from velocity 
error or any other time related source, to the extent 
that the delta carrier measurements from various 
satellites are known, and provided the geometry 

relating phase change to position change is strong 
enough. 

2) The advantage of this technique (phase smoothing in 
the positioning domain ) over phase smoothing in the 
range domain is that phase smoothed pseudo ranges 
require continuous tracking of a single observation for 
it to effectively contribute to the solution. In the 
implementation described above, the various satellites 
can lose lock and be reacquired without significant 



loss in performance provided at least 4 satellites (they 
don’t have to be the same ones) are maintained across 
the delta time between epochs. 

3) This method has been shown to improve positioning 
availability in establis hed residential neighbourhoods 
by over 10% and in urban canyon settings by 40%. 

4) This method has improved single point horizontal 
accuracy from 4 metres (2DRMS) to 3 metres 
(2DRMS) in residential neighbourhoods. In urban 
canyon settings, the accuracy has improved 
significantly, from 64 metres (2DRMS) to 20 metres 
(2DRMS) in one test and from 7.6 metres (2DRMS) 
to 6.0 metres (2DRMS) in another. 

5) The single differenced pseudoranges have significant 
correlation with one another due to the common 
errors on all observations arising from the reference 
satellite common to all. Doing the update as a single 
batch update with a fully populated pseudorange 
covariance matrix eliminates this issue. 

6) The correlation also exists for the phase 
measurements. Its effect is limited by using the 
highest satellite as a reference, but investigations 
should be made to see if the performance could be 
improved by processing the delta phase observations 
in a batch process. 
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FINAL NOTE 
 
The initial development took place because Sportvision 
brought us a set of racing environment requirements. The 
happy ending to that story is that the technology has been 
successfully deployed by Sportvision and the results can 
be seen during televised NASCAR races on either FOX or 
NBC. A sample of the video image from FOX follows. 
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