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ABSTRACT 
 
The use of clock and position constraints is a standard part 
of GPS navigation. A 3 dimensional position constraint is 
normally used to facilitate the generation of differential 
corrections, and to provide a fixed location to which RTK 
vectors can be applied so a precise position may be 
computed. Furthermore, clock and height constraints can be 
used to improve the geometry provided by the satellite 
constellation and in some cases provide a degraded solution 
in cases when less than 4 satellites are available. But in land 
and air applications, such constraints are not particularly 
useful for navigation because the constraints are often not 
accurate enough to strengthen the navigation solution 
significantly.  
 
Recently, NovAtel Inc. was approached by SportVision 
with a request for a reasonably priced navigation system 
which could provide 1 metre positioning accuracy on a 
racetrack where the satellite geometry would periodically 
be very poor due to restricted visibility. Initial attempts to 
use clock constraints, height constraints, a position velocity 
filter and a low cost inertial system did not meet the 
requirements. A novel approach using planar section 
constraints provides the required accuracy and in fact 

facilitates a dramatic improvement in not only ambiguity 
resolution time but also ambiguity resolution reliability.  
 
Briefly, the method requires a contiguous set of planar 
sections which represent the surface of the track on which 
the vehicle is driving. When a roving receiver is on the 
track, it searches for an appropriate planar section by 
projecting its approximate position onto a horizontal 
reference frame used by the model. Having found the 
appropriate planar section, the remote receiver constrains 
its position in the direction normal to the planar section. To 
be useful, the position of the defining planar sections 
corners must be known to high accuracy in the same 
reference frame as the base station co-ordinates. In this case 
the planar sections a produced photogrammetrically and 
have an accuracy of about 10 cm.  
 
The use of such planar constraints has a dramatic impact on 
both pseudo range accuracy and RTK availability. This 
paper describes the methodology used to provide planar 
section constraints and will show test results which 
demonstrate the accuracy and reliability improvements 
achievable with this method. 
 
INTRODUCTION 
 
Many land applications which use GPS are hampered by 
the restrictions imposed by buildings and natural 
impediments to the transmitted GPS signal. Often the GPS 
geometry is too poor to provide the geometrical strength 
required to generate the position accuracy the application 
requires. A particular example of this is the SportVision 
application which requires GPS positioning accuracy of 1  
metre 95% of the time, in conditions of reduced satellite 
visibility in a highly dynamic environment. The reason for 
this positioning requirement is that SportVision’s client 
television network needed real time vehicle positions of the 
participating vehicles for on-screen annotation of the race 
cars during the broadcast of the race. 
 
The actual environment is any one of a series of NASCAR 
race tracks. Although each track is somewhat different, they 
share four common features. First, the visibility to all 
satellites is severely reduced at some point on the track due 
to the existence of a grandstand on at least one side of the 
track. Second, the availability of satellites is reduced and 
the remaining signals are corrupted by the proximity of a 10 
metre tall overhanging steel and wire fence on the outside 
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edge of the track designed to keep vehicle debris out of the 
stands.  Third, the track is not level, and in fact the cross 
track slope is not constant, varying by as much as 35 
degrees between the straight sections and the curves. 
Fourth, the vehicle’s linear velocity is typically 100 m/sec. 
A final constraint on the system was cost. In a typical race 
there are 40 vehicles, and any technology advances made to 
one car have to be made to all of the others, so the 
prospective solutions had to incorporate GPS signals only 
or GPS with a very low cost inertial unit. 
  
SportVision and NovAtel Inc. investigated various 
approaches to this problem. The first option involved a 
height constraint based on the previous position. 
Unfortunately, the dynamics involved made predictions that 
would satisfy the accuracy requirements impossible. A 
second approach included a clock constraint with an 
OCXO. Unfortunately, the clock model could not take into 
account the unpredictable effect of g sensitivity. The 
variability in the banking plus the centripetal acceleration 
experienced by the system made the lateral acceleration 
vector vary by up to 10 m/sec. So the clock predictions did 
not help the system satisfy the system’s position accuracy 
requirements. We at NovAtel Inc. attempted to develop a 
decentralized position/velocity filter that accepted position 
and velocity inputs from the existing least squares filter and 
used these to generate an integrated model which could be 
used when the number of satellites in the constellation 
dropped below 4. Unfortunately, this didn’t work either. 
The random walk velocity model is not adaptable to the 
dynamics in the race environment, and random walk 
excursions of tens of metres were not uncommon. 
SportVision in conjunction with the manufacturer of a low 
cost inertial sensor, attempted to quickly develop an 
integrated solution, but unfortunately these kinds of system 
developments take more time than SportVision had.  
 
In spite of all of these failures with the NovAtel Inc. 
receiver (by itself and in conjunction with other 
technologies), a preliminary test broadcast in November 
2000 showed enough promise to SportVision and their 
client network that they were confident that an 
incrementally improved GPS only system could provide the 
system accuracy needed in the application. Two approaches 
SportVision and NovAtel Inc. thought could be promising 
were the use of track model constraints and the use of on 
site pseudolites. Of the two, the track model enhancement 
was closer to production, so we decided to concentrate on 
developing it first.  
 
The constraint methodology associated with a track model 
constraint is similar to the use of a height constraint. If a 
height constraint is used to aid the position estimation, the 
method used is to assume the constraint is with respect to a 
planar surface which is parallel to the local level plane at 
the approximate position of the receiver. Then the 

uncertainty of the constraining position can be represented 
in the local level frame by a diagonal covariance matrix 
with large entries for the horizontal components and a 
relatively small entry for the vertical component. Since the 
estimation is done in the Earth Centred Earth Fixed (ECEF) 
frame, the covariance in the local level frame has to be 
transformed to the ECEF frame with the linear 
transformation relating the two frames. If the position 
changes significantly, the local level planar surface will 
change with respect to the ECEF frame and the 
transformation has to be repeated. Otherwise the same 
ECEF covariance can be used over again. In a track model 
constraining process the implementation is very similar 
except the constraint position and covariance (or weight) 
matrix changes at almost every positioning epoch, and the 
constraining planes are not necessarily parallel to the local 
level plane. The constraining method is applied to both the 
least squares and RTK processes, and the specific 
implementations for these processes are described later on 
in more detail. 
 
Before proceeding with those descriptions, let’s look at the 
track model representation itself. A track model is a set of 
planar surfaces which approximate the contiguous surface 
on which the navigation takes place. Each planar surface is 
defined by three vertex points (a triangle).  To obtain this, a 
digital representation of the track surface is created using 
aerial photogrammetry techniques.  High resolution 
overlapping aerial photographs are taken from 
approximately 300 meters above the track surface.  
Analytical photogrammetric workstations are used to create 
a digital terrain model of the track surface.  Observable 
features such as paint, fences, walls, buildings, and 
pavement boundaries are captured as well. These features 
are used to verify proper registration of the track model 
with the differential GPS system.  The relative accuracy of 
the track model is within 10cm. The constraint provided by 
this is that while the antenna is “within” the triangle, the 
position of the antenna is constant in the direction normal to 
the planar section. Based on a fixed antenna height, a planar 
constraint can be defined with respect to the local planar 
section. This is quite similar to a height constraint. 
Complexity in the implementation of the track model arises 
partly from the difficulty in determining which planar 
surface to use as a constraining surface, and partly from the 
system design required to generate the constraint for a real 
time system. This is made more difficult due to the fact that 
the internal GPS filter works in the ECEF frame, while the 
track model is described in the geographic frame. In order 
for the application to be successful in real time, a 
transformation to an intermediate planar reference frame is 
implemented. A description of this transformation, and the 
subsequent search process is included later.   
  
The position/clock filter in the NovAtel Inc. series of GPS 
receivers is based on a single epoch least squares technique. 



The first approach was to modify the least squares routines 
so they could accept a planar section constraint and 
associated weight matrix in its estimation process. This 
required very small changes to the estimation process, was 
successfully implemented in a short time and showed a 
marked improvement in the system’s positioning accuracy. 
These results are shown later on. 
 
After the pseudo range filter modifications and testing, it 
occurred to me that the constraint process would be ideally 
suited to aid the Real Time 20cm (RT20) filter. The benefit 
to this filter would be that the weakest direction (up) would 
now have an initializer with significant weight. It can help 
the RT20 filter provide more accurate positions as well as 
providing an accurate seed sooner to the RT2 filter. So the 
methodology used to constraint the RT20 filter is described 
and real time test results for that filter are included.  
 
 
 
TRACK MODEL DETAILED DEFINITION 
 
The track model positions are defined in WGS84 
geographic co-ordinates but the internal reference frame for 
the GPS filter is in ECEF co-ordinates. This would not be a 
problem (the geographic co-ordinates can be simply 
transformed to ECEF (xyz) vectors, except that the triangle 
search engine requires a primarily two dimensional frame. 
This could be satisfied if the internal position was 
transformed to geographic co-ordinates, but this 
transformation is time consuming, and it is possible it may 
have to be carried out more than once per solution. So a 
different approach was to generate a local plane 
representing the model and a simple transformation that 
converts vectors in the ECEF frame to vectors in the local 
model frame. The corner positions of all the triangles (in 
the ECEF frame) are differenced with a local “base 
position”. These are rotated to the local frame by the 
rotation matrix required to rotated a vector in the ECEF 
frame at the base position to a vector at the base position 
but in the geographic frame.  So local co-ordinates are 
generated in this manner for all the points in the track 
model. The generation is simple 
 
Co-ordinates of model point in the local frame:  
 
Pl = Re

l * (PECEF – PBaseECEF) 
Where PBaseECEF  is the base position vector in the ECEF 
frame, 
PECEF  is the track model position in the ECEF frame,  
Re

l is the rotation matrix used to transform a vector in the 
ECEF frame to the geographic frame at the base position. 
 
If a triangle search is required, the current GPS position is 
transformed to the local frame via the same method and the 
search progresses as usual in that frame. It is possible that 

additional optimisation regarding the search may be 
required once the algorithm is working on the OEM4 card. 
 
Internally, the co-ordinates for all the points are maintained 
both in the ECEF frame and in the local frame. The 
constraint position is generated from the ECEF co-
ordinates, and the search algorithm is applied using the co-
ordinates in the local frame. The search algorithm described 
later finds an appropriate triangle. The previously generated 
constraint position is taken from it and used as a seed 
position in the filter. The 6 weight matrix elements for that 
triangle constraint are expanded to generate a Px matrix for 
the least squares solution. 
 
SEARCH MECHANIZATION  
 
The track model consists of a series of triangles 
parameterized in a local planar reference frame. The search 
algorithm uses a routine supplied by SportVision which 
determines whether or not a planar (x,y) position falls 
inside or outside of a triangle. If it is inside, then that 
triangle is used for the constraint, otherwise it continues the 
search. This process continues until a triangle is found 
which satisfies the conditions, or all of the possible 
triangles have been eliminated as constraint candidates. The 
process is optimised by dividing the triangle into 256 
rectangular regions parameterized in the same local planar 
co-ordinate system. It is easy to compute which of these 
rectangles includes a  particular position. Then a restricted 
search of only the triangles within the target rectangle can 
be made. Therefore, a search which would normally require 
an average of 1000 triangle checks can be reduced to one 
which takes an average of 16 or so.  
 
LEAST SQUARES IMPLEMENTATION 
 
In the following, the least squares process and the height 
constraint modifications to it are described. The 
modification required to constrain to an arbitrary planar 
surface follows. 
 
The least squares filter generates corrections to the system’s 
ECEF position and clock according to the equation 
 
δX = (ATPA)-1 ATPω 
where 
δX = correction vector to position vector and clock 
[X,Y,Z,Clk]T 
A = design matrix (nx4) based on satellite to receiver 
geometry 
       In detail A = [A1,A2,A3…An]T 
             And  Ai = [∂Ri/∂X, ∂Ri/∂Y, ∂Ri/∂Z,1] 
             With Ri = ((Xi – X)2 + (Yi – Y)2 +(Zi – Z)2 )1/2 
                              X,Y,Z = ECEF user position 
                              Xi,Yi,Zi = ECEF satellite position 
 



P = Pseudo range observation weight matrix (nxn) which is 
diagonal with the diagonal entries being the reciprocal of 
the variance entries of the pseudo ranges. 
ω = The vector of misclosures between the theoretical 
observations based on the current satellite set and the last 
set of positions estimated, and the actual observations 
(pseudo ranges).  
 
So  
ω = Robs - Ri - Clk  
    = Robs - ((Xi – X)2 + (Yi – Y)2 +(Zi – Z)2 )1/2 - Clk   
 
At every observation time, the process is repeated until the 
length of the vector of corrections (δX) to the 
position/clock parameter vector is small enough. This is 
normally accomplished after two iterations. At each epoch, 
the previous position and clock estimate is used to start the 
process, but any covariance information associated with 
that estimate is ignored. This means that at every epoch, at 
least 4 satellites are needed to estimate the 4 elements on 
the position/clock vector. If information related to the 
position/clock  parameters were available, then this could 
be included in a modified least squares process according to 
the following: 
 
δX = (ATPA + Px)-1 ATPω 
where 
Px = Parameter weight matrix (4x4) based on knowledge of 
the parameters includes in the estimation process.  
 
If certain elements of the parameter vector are well known, 
then this knowledge can be incorporated in the system by 
making the appropriate diagonal elements of the parameter 
weight Px large. If, for example, the clock estimate has a 
standard deviation of ½ m, then the Px entry P4,4 would be 
4, and one less satellite would be required in the estimation 
process to generate a 4 parameter solution. 
 
There are more complications if the knowledge of height is 
to be represented by this system because height is in the 
geographic reference frame and so the covariance 
information for height must be transformed from the 
geographic frame to the ECEF frame before it can be used 
by the system in the estimation process. But this is fairly 
easy because the transformation between the two frames is 
well defined.  
For this case, the Px matrix is  
 
Px = Cx

-1 = (JTCgJ)-1 
Where  
Cg = The covariance matrix of the position/clock in the 
geographic frame. 
J = The matrix of derivatives of the transformation of 
position/clock from the geographic to the ECEF frame.  
Cx = The covariance matrix of position/clock in the ECEF 
frame. 

 
In the case of the track model application, J is not the 
rotation matrix used to transform a vector from the 
geographic to the ECEF frame, but instead a rotation matrix 
used to transform a vector from the planar section frame to 
the ECEF frame. This matrix is easy to generate by simply 
representing three basis vectors, describing the planar 
section frame and a normal to it, in the ECEF frame. The 
positions of the vertices of each triangle are transformed 
from the geographic to the ECEF frame. The differences of 
these vectors are parallel to the planar section, and the cross 
product of two of these difference vectors provides a 
normal vector to the planar section. The cross product of 
the normal vector with either of the vector differences 
generates a vector parallel to the planar section and 
orthogonal to the other two vectors used in the cross 
product. Finally, normalising these three vectors provides a 
set of orthonormal  basis vectors representing the planar 
section frame in ECEF co-ordinates. So this set of vectors 
can be combined to generate J, the 3 by 3 rotation matrix 
used to rotate a vector from the planar section frame to the 
ECEF frame. Symbolically: 
 
J = [B1 | B2 | B3 ] 
Where B1,B2, B3 are the basis vectors whose construction is 
defined in the previous paragraph.  
 
The constraint position is given by the average of the three 
corner positions in the ECEF frame plus the constraint 
position relative to the planar section, transformed to the 
ECEF frame. Symbolically, this is: 
 
Constraint position:  Pcp = ((P1 + P2 + P3)/3.0) + J * [0,0,ha] 
Where P1, P2, P3 are the ECEF positions of the planar 
section corners, and ha is the antenna height with respect to 
a level planar section. 
 
This is fairly straight forward, and mimics the constraint 
logic used to generate geographic height constraints.  
 
RT20/RTK FILTER MODIFICATION 
 
RT20 [1] is a Kalman filter that generates estimates of the 
relative position between a reference and rover receiver as 
well as estimates of floating ambiguities related to the 
double difference carrier observations for those two 
receivers. In the NovAtel Inc. receiver, RT20 provides a 
best available solution when RTK is not available as well as 
providing an initial search space for the RTK carrier based 
process [2].  
 
Carrier positioning is a process in which a relative position 
between two ground sites (a base station and a remote 
station) is computed based upon observed fractional phase 
differences and known whole cycle differences between the 
two sites. The fractional and whole cycle differences 



together produce a synthetic observation which is equal 
(when converted to metres) to the geometrical difference in 
distance between the two sites and the satellite they are 
both observing. Knowledge of the whole cycle portion of 
the synthetic observation cannot be determined directly 
from the observations, but must be determined indirectly 
from many observations over time during what is known as 
a whole cycle resolution process. The whole cycle 
difference is also known as a carrier ambiguity, and the 
resolution process is known as an ambiguity resolution 
process.  
 
In order to resolve fixed integer ambiguities, an initial 
guess of the position difference is made and a series of sets 
of ambiguity candidates is selected such that each set will 
generate a position difference that is close to the one chosen 
in the initial guess. Each set is used to compute a position 
difference and an associated set of residuals. For each set, 
these residuals are accumulated and the accumulation 
compared to a theoretical accumulation and also to other 
accumulations in the series of candidate sets. If the correct 
set of ambiguities is in the series, then eventually its 
residual accumulation will be close to the theoretical 
accumulation and also smaller than any of the residual 
accumulations for the other sets. At this time the correct 
ambiguity set is known and can be used to generate relative 
positions with carrier type accuracy.  
 
To summarise, there are two things that have to be done to 
resolve ambiguities: 
1: Guess at an initial position, and an associated search 
space whose size is based on the precision of the initial 
position estimate. 
2: Use the guess and its precision to define a series of 
candidate sets of ambiguities and then accumulate 
computed residuals over time and eliminating sets whose 
residual accumulation exceeds some kind of threshold. 
 
Typically a Kalman filter with both position and ambiguity 
states is used to define an initial guess for the search space. 
It is run in real time as carrier and pseudo range 
observations are provided to it and some kind of executive 
routine monitors its position covariance to see when the 
search space can be defined and search can commence. By 
including position constraints with the GPS observation set, 
the precision of the initial position estimate used to define 
the search space can be reduced sooner and more, and this 
should significantly speed up the resolution process. 
 
The Kalman filter used to estimate position and floating 
ambiguity states can be described as follows: 
  
State: X=[x,y,z,N1,N2,…Nk] 
State Initial Covariance: P= [big diagonal elements, 0 off 
diagonal elements] 
 

The design matrix H defines the linear relationship between 
the double difference observation (satellites r,j and the two 
receivers) and the state elements. 
For satellite j and reference satellite r the phase relationship 
is  
H = [∆xr

m/Rrm- ∆xj
m/ Rjm , ∆yr

m/Rrm- ∆yj
m/ Rjm , ∆zr

m/Rrm- 
∆zj

m/ Rjm,0,0,…1,0,…0] 
While the pseudo range relationship is  
H = [∆xr

m/Rrm- ∆xj
m/ Rjm , ∆yr

m/Rrm- ∆yj
m/ Rjm , ∆zr

m/Rrm- 
∆zj

m/ Rjm,0,0,…0,…0] 
 
The Kalman filter mechanization is as follows: 
 
Gain: Kk = Pk (-)Hk

T[HkPk (-)Hk
T+Rk]-11 

Covariance Update: Pk (+) = [I- KkHk]Pk (-) 
State Update: Xk (+) = Xk (-)+Kk [Zk - HkXk] 
 
 
Where  
R = Observation covariance matrix (scalar for phase and 
pseudo range observations) 
z = Observation (pseudo range or carrier measurement) 
 
In the pseudo range and phase measurement 
implementation, the observations are decorrelated and the 
updates are done serially, one for each observation. With 
the position constraint information from the track model, 
the observation/state relationship is very simple 
 
H= |1,0,0,0,…,0|   
      |0,1,0,0,…,0| 
      |0,0,1,0,…,0| 
 
H= [I,0] with I = 3x3 and 0 = 3x(n-3), (n = number of 
states) 
 
And Cx is the covariance matrix of the constraint position: 
 
Cx = JTCtJ 
Where  
Ct = The covariance matrix of the position in the “triangle” 
frame. 
J = The matrix of derivatives of the transformation of 
position from the “triangle” frame to the ECEF frame.  
 
Ct =  |10000,      0,        0| 
         |0,      10000,        0| 
         |0,              0,   0.01| 
 
that is, the parallel elements are more or less unknown, and 
the normal element is known to 10 cm at 1 sigma. 
     
This completes the description of the RT20 process and the 
track model constraint modification to it. 
 



TEST RESULTS 
 
The results show here are based on data collected during 
two tests at the Fontana race track (California speedway) in 
Ontario California. The first set of results compares the 
performance of the system in single point least squares 
mode with a track model and without. The data for this was 
collected in September 2000, and the results were generated 
with a post mission process. After the RT20 filter was 
modified to use track model constraints, the same data was 
processed with the modified RT20/RTK process.  The 
second set of results are based on a real time data set (that is 
generated in real time with a track model inserted into the 
OEM4 software), and address the effectiveness of the 
system operating in RT20/RTK mode. 
 
LEAST SQUARES FILTER TEST RESULTS 
 

The test data used in the following analysis was collected at 
the Fontana track in California on September 5, 2000. The 
tracking environment was excellent, so that continuous 
RTK positions are available. These are used as control 
positions against which the unaided and aided differential 
pseudo range positions can be compared.  Since height is 
the most sensitive component to the track model constraint 
process, the focus is on the height results. There are four 
plots to follow. The first shows the trajectory of the test 
vehicle around the Fontana track. The second shows the 
RTK height and standard deviation over time. The third 
shows the same data generated from unconstrained single 
point pseudo range data, and the last shows the heights 
from a single point pseudo range process when the process 
is aided with track model constraints. 
 

 

 
 

 
 

 
 

 

The aided results shown on Fig 4 indicate a significant 
improvement in height accuracy compared to those shown 
in Fig 3. The unaided height shows a typical standard 
deviation of between 3 and 4 metres , while the aided 
heights have standard deviations of typically 0.5 metres or 

less. The heights shown on Fig 4 before time 263600 and 
after 264550 correspond to infield positions for which the 
track model data did not exist.  
 



RT20/RTK FILTER TEST RESULTS 
 
The success or failure of the use of track model constraints 
depends on the reliability of the model, and as it turns out, 
the consistency of the datum used for the model and the 
differential reference station. So a preliminary section 
which addresses the reconciliation of the two datums is 
included prior to the RT20/RTK results.  
 
The model to base station datum discrepency is determined 
below by comparing the track model normal constraint with 
the precise GPS position in the direction normal to the track 
model section applicable to the GPS position. This 
comparison is given by ω, the misclosure used later in the 
RT20 filter. 
 
ω = Re

p
(Row 3) (PosRT – PosTM) 

Where 
Re

p = the rotation matrix used to transform a vector from 
the ECEF to “triangle” frame 
PosRT = the GPS ECEF position (either RT20 or RT2) 
PosTM = the track model constraint position in the ECEF 
frame 
Note that ω is just the third element of the vector,  because 
this is the part in the direction normal to that pertinent  
triangle. 
 
The following sets of plots documents the validation work 
on the track model supplied by SportVision. The 
misclosure indicates the accuracy of the constraint. 
Comparisons between an updated model and Real Time 2 
cm (RT2) are shown in Figures 5 and 6.  There are 
significant errors dependent on the position of the vehicle 
on the track shown on Figure 5. These errors are primarily 
related to the use of base station coordinates referenced to a 
different datum than the track model coordinates. Figure 6 
shows results when both the track model errors and base 
station inconsistencies are removed. The inconsistencies 
(datum shift) between the base station and track model 
datums are observable via the misclosures described above, 
and a method is described below that can be used to 
estimate these shifts.  
 
The following (Fig 5) shows a normal direction comparison 
of the track model with RT2 vectors. Only RT2 positions 
with standard deviations of less than 2 cm are used in the 
comparison.  
.  

Fig 5 Track Model/RTK normal direction misclosures 
prior to reconciliation 

 
 
Based on the available data, the following estimation 
process can be used to determine the offsets required to 
reconcile the base station and track model reference frames: 
 
The offset between the base station frame and the track 
model frame is reflected in triangle frame coordinates as  
xt

3 = xe o n3  
The observation equation that models this vector 
component is  
ω = xe o n3 = Re

p
(Row 3) (PosRT – PosTM) 

or 
ω = xe o n3 = U3

TRp
e (PosRT – PosTM) 

 
Where  
xe = Base station shift in the ECEF frame,  
xt

3 = z component of base station shift in triangle frame 
n3 = normal vector to the triangle in the ECEF frame,  
Rp

e = the rotation matrix used to transform a vector in 
“triangle frame” coordinates to the ECEF frame 
U3 = unit vector normal to the triangle in the “triangle 
frame”  U3 = [0,0,1]T 
and o = dot product operator 
 
Noting that n3 is simply the transpose of the last column of 
Rp

e, a least squares estimate can easily be generated from 
this ω via  
X = (Σ(ATA))-1Σ(ATω) 
Where 
Ai = n3i = Rp

e
iU3 

The summation goes from i = 1 to the number of RTK 
observations on the model. In order for this to work, a 
model with reasonable variation of normal vectors has to be 
used if all three components are to be observable. 
 
The method was implemented and the estimated base 
station coordinate shifts were applied to the base station 
coordinates to generate the improved results shown on 
Figure 6 below. 



 
Fig 6 Track Model/RTK normal direction misclosures 
after reconciliation 

 
 
There are still some position related systematic errors 
evident on this plot, but the residual errors could result 
from errors in the photogrammetry. A triangle specific 
height shift (observable with RT2 positions) could remove 
this error, but as it turns out, the improved preformance 
based on a 10 cm track model error is sufficient. 
 



RT20 PRELIMINARY TEST RESULTS: 
 
The Fontana data collected last September are used to 
generate constrained and unconstrained position results. 
The items of particular interest were resolution reliability 
and the time to resolution possible when constraints are 
available compared to when they are not. First lets look at 
the improvement in resolution time. In order to see this, I 
forced the ambiguity filters (both RT20 and RT2) to reset 
10 seconds after every resolution, and then allowed the 
ambiguities to be re-resolved.  
 
The first plot (Fig 9) shows the standard (unaided) RT20 
misclosure from the track model and the misclosure 
standard deviation against time. After each resolution the 
filter is reset and the misclosure standard deviation starts at 
the 10 to 15 metre level and decreases over the next 40 to 
50 seconds to the 1.5 metre level. 
 
The second (Fig 10) shows the same data but with track 
model aiding the RT20 process. The standard deviations 
shown are before the update, and that is why they are so 
large. The unconstrained system managed 19 resolutions 
(average resolution time of 51 seconds), while the aided 
system completed 41resolutions, for an average resolution 
time of 24 seconds.  
 
Figures 11 and 12 show the time between successive RT2 
records as well as the north co-ordinates of the RT2 
positions only. The long time intervals show the resolution 
times. 
 

 
 

 
 

 
 

 
 



The Figure 13 shows the track model misclosures of the 
resolved positions. The misclosures are identical (when 
available) to the ones seen in Fig 6, and this indicates that 
the 41 resolutions are correct. 
 

 
 
The errors in position that occur in the resolved constrained 
position are the same as the errors in the resolved 
unconstrained position, that is typically about 2cm. This 

verifies that the resolution process is successful in the 
constrained case.  
 
If the ambiguities are not resolved, then the position error 
will be larger. The difference between RT20 positions with 
RT2 positions effectively generates an error set for the 
RT20 positions.  A comparison of the differences between 
these errors in the unconstrained case (Fig 14) compared to 
the constrained case (Fig 15) highlights the advantages of 
the track model constraints in the unresolved case. The 
following Table 1 summarizes the results shown in Fig 14 
and 15. Since the track model is primarily a height 
constraint, the vertical errors in the constrained case are 
much smaller. The large horizontal error in the constrained 
case is a result of poor geometry, and the standard 
deviations of the position at this time reflects this. If the 
unconstrained system had dealt with the same geometry in 
the same mode, then its error would have been high there 
too. The reason the RT20 RMS is higher for the constrained 
case is because so much more of the positions computed are 
in the high variance portion of the floating ambiguity 
convergence curve. So the RMS appears worse because the 
constrained system spends less time in RT20 mode. Note 
that the unconstrained case has more samples in RT20 
mode because it took much longer to resolve ambiguities.

 
TABLE 1: Post Mission RT20 Only Performance Statistics 
Case Samples out of 972 Horizontal RMS Horizontal Max Vertical RMS Vertical Max 
Unconstrained 628 0.35 m 0.94 m 0.46 m 2.03 m 
Constrained 146 0.55 m 1.75 m 0.16 m 0.33 m 
 

 
 

 
 



FONTANA FIELD TRIALS FEB 13,14,15, 2001 
 
On Feb 12, 2001, Mike Bobye and I met Michael Brown in 
Ontario, California, the site of the California Speedway 
(Fontana racetrack) for a race track trial. The object of the 
trial was to validate the modifications made to the OEM4 
software in a real time test. For successful validation, 4 
criteria had to be met: 
1. The receiver must have no serious system level 

degradations, including memory errors or significant 
CPU overloads. 

2. The accuracy of the constrained system had to be better 
than that of the unconstrained system. 

3. The resolution time of the constrained system had to be 
less than that of the unconstrained system. 

4. The reliability of the constrained system had to be 
better than that of the unconstrained system. In other 
words, there had to be fewer incorrect resolutions.  

 
In order to do this, a comparison of the results from a 
modified OEM4 was made with the results from a standard 
OEM4 configured as an RTK receiver. The two receivers 
processed signals received from a single antenna mounted 
on the roof. The base station telemetry line was split so 
both receivers had access to identical RTCA range and 
phase observations.  
 
The Fontana track is an oval track (see Fig 1) 
approximately 3.5 km long, with banks of about 20 degrees 
on the east and west ends. A 40 metre high grandstand 
extends the length of the south side of the track and 
provides decent obstruction to the receivers of satellites in 
the southern sky when the receivers are on the south side of 
the track. Between the track and the grandstand is a wire 
mesh fence designed to catch debry that results from 
normal and abnormal race conditions. The fence is 7 metres 
high and extends about 3 metres over the edge of the track. 
It consists of 15 cm square wire mesh and generates 
significant perturbations with the GPS signals. The 
following picture shows the fence and a portion of the 
track. 
 

 

 
The track itself is 16.8 metres wide and is divided into 5 
sections of 3.4 metres . For the purposes of test control we 
tried as much as possible to follow the divisions between 
the pavement sections. Then height comparisons from one 
lap to the next can be made and good agreement should 
indicate the system is working better than if the lap to lap 
comparison is not good. There were 4 divisions or rows, 
which are labeled Row 1 to Row 4. Row 1 is next to the 
infield, and is relatively unobstructed. Row 4 is adjacent to 
the fence (3.4 metres away), and with the fence overhang, 
exactly ½ of the sky is at least partially obstructed. Row 1 
can be seen under the car in the following picture. 
 

 
 
An important part of this test was the generation of base 
station co-ordinates that were in datum agreement with the 
track model itself. As described earlier, the base station 
shift can be solved by a least squares procedure that uses 
the difference between track model positions and positions 
generated as the sum of RTK vectors and the base station 
position. In this test the base station position was on top of 
the grandstand at an initially arbitrary point. An 
approximate WGS84 position was generated for it by 
averaging for ½ hour or so. Using this position, an RTK 
data set representing several laps of the track (although 1 
lap would have been quite sufficient) was generated with 
the standard OEM4 receiver. Using the previously 
described least squares procedure (two iterations were 
required), a base station shift of about 3 metres was 
computed for the base station. I should point out that during 
the initial set-up on Feb 13, Ontario was doused with the 
most single day rainfall of the last 10 years and our laptop 
computer with the base station shift software on it was 
damaged from the moisture. As a result we had to have the 
code emailed from Calgary and we had to buy a C++ 
developer kit from a vendor in Ontario, and so the base 
station shift could not be computed until the afternoon of 
Feb 14. So before the developer kit was available, we tried 
running the track model OEM4 with the approximate base 
station co-ordinates. The result of this was a system that 
generated height discrepancies of 3 metres (this was the 



only observable component in the field) and a high 
frequency of RTK resets.  
 
TEST DEFINITION 
 
The test itself took place over 2 days, Feb 14 and 15. On 
the first day each of the “rows” were driven 3 times without 
any artificial resets.  
 
On the second day each row was driven 11 times with the 
standard OEM4 and track model OEM4 combination, but 
on rows 1 and 2, filter reset commands were issued to the 
filter to re-initialize the carrier measurement ambiguities. 
The object of this was to measure the difference in 
ambiguity resolution times for the 2 receivers when the 
constellation was good. For rows 3 and 4 it was not 
necessary to issue reset commands because signal 
blockages in those rows caused the filter to reset anyway.  
 
TEST RESULTS FEB 14 
 
The  Feb 14 results show fairly consistent results between 
the data collected on Rows 1, 2 and 3 but some discrepancy 
in Row 4.  
 
The effect of an early RTK reset is seen on Fig R1A S and 
Fig R1A TM for the standard and track model system. The 
standard model height reaches a standard deviation of 1.7 
metres, while the track model OEM4 height standard 
deviation is less than 0.25 metres. The time in RT20 mode 
for the standard system is about 90 seconds, while the track 
model OEM4 regains RT2 type positions after only 50 
seconds.  
 

 
 

 
 
The same Row 1 height data is shown on Fig R1B S and 
Fig R1B TM, but in this case plotted against longitude, so 
that the lap to lap repeatability can be seen more easily.  
 

 
 

 
 
 
 



 
 

 
 
The Row 4 results above (“Fig R4B S” and “Fig R4B TM”) 
show a more dramatic difference in performance between 
the two systems, but this may be expected given the 
proximity of Row 4 and the fence. The first 7 laps were 
driven on Row 4 (3.3 metres from the fence), Fig R4A S 
and Fig R4B S indicate a significant degradation that 
occurs near the fence. The constrained system has resolved 
ambiguities almost continuously, but the standard system 
never reaches a fixed ambiguity state. 
 
For the last three laps of the row 4 experiment we drove on 
the track between row 4 and the track wall, in what was the 
most obscured portion of the track. In this location we 
stopped and allowed the systems to resolve three times (not 
always at the same point on the track). During each of these 
resolutions, the standard OEM4 resolved improperly and 
the track model OEM4 resolved correctly as was verified 
by comparisons with control later on in the real time test. In 
addition, the number of satellites was about the same 
(between 4 and 6) for both receivers, and the idle time, 
which is a reflection of the CPU load, was between 50 and 
60 percent. This indicates that there is no significant signal 
level degradation as a result of the track model constraint 
logic.  

 
 

 
 
The plots above “Fig R4B S” and “Fig R4B TM” show the 
height vs longitude which gixes a qualitative but indication 
of the improvement of the constrained version over the 
standard version. The excursions seen on the constrained 
plots occurred because we drove away from the row 4 
resolution location to return via an unobstructed path during 
the resolution verification to a known control point. 
 
TEST RESULTS FEB 15 
 
The testing on Feb. 15 was similar to the Feb 14 tests. We 
used each off the 4 pavement divisions at a driving guide in 
order to generate a repeatable path to follow on increasingly 
obstructed areas of the racetrack. As before row 1 is the 
least obstructed. The objectives of the experiment on this 
day are to determine the difference in resolution times 
between the two systems, to obtain accuracy estimates for 
the real time positions and to find out if the constrained 
system was resolving properly.  For row 1 and 2 we issued 
reset commands after every resolution and then compared 
the resolved positions with a continuous trajectory 
constructed from the data reprocessed in post mission 
without any resets. Continuous tracking was not possible 



for row 3 or 4, so repeatability is the only indication of the  
system’s reliability.  
 

 
 

 
 
These are row 1 results that show the effect of continuous 
RT2 resets on the two systems (standard system on top, 
height vs time on the left, height vs longitude on the right). 
In real time both receivers were allowed to resolve 
ambiguities, and then a reset command was issued. The 
resolution time in both receivers was not the same, so the 
commands were issued asynchronously. The commands 
were issued at different places in the track so the effect of 
different constellation shadowing could be observed. The 
effect of the reset command is to force the the receiver to 
discard all of the RTK ambiguity information (for both the 
float and fixed ambiguity filters) and return to pseudo range 
differential mode. The height repeatability is much better 
on the track model heights, and the resolution time is much 
less. The height standard deviation for the standard model 
in unresolved mode is between 2.5 and 0.7 metres, while 
the constrained height standard deviation varies between 
0.25 and 0.1 metre in unresolved mode. The average 
resolution times for the standard and constrained system are 
3 minutes and 25 seconds respectively. There were between 
4 and 7 satellites tracked on both receivers. 
 

 

 
 

 
 



 
 

 
 
The plots “Fig F15 R1C S”  and “Fig F15 R1C TM” on the 
above left hand side show the difference between the real 
time positions with their reset induced errors and 
completely (and correctly) resolved positions generated 
without resets in post mission. As expected the heights on 
the track model OEM4 are more consistent than the heights 
for the standard OEM4, but the  plots indicate that when the 
system is not resolved, the maximum horizontal error level 
is not too different for the two systems. However in the 
track model case the time the system stays in non-fixed 
ambiguity mode is much less, so the duration of the when 
the constrained system has large errors is much less. Also, 
the component with the highest error (by a factor of two), 
namely height, has been reduced significantly.  
 
 

  

  
The above plots “Fig F15 R1D S”  and “Fig F15 R1D TM” 
show the standard deviations for the standard OEM4 and 
track model OEM4 respectively, and a comparison of these 
with the associated error plots indicates that the reported 
standard deviation is a reasonable indication of the true 
accuracy of the system in these cases. The plots above at 
least show the assumption that the standard deviation 
truthfully reflects to error level is somewhat reasonable. 
 
For every epoch of the data set related to the above test in 
which the system did not have fixed ambiguities, the ratio 
of the each axis error to its associated standard deviation 
was computed. Then the means of all these ratios for every 
axis and both systems were generated. These mean ratios 
are summarized below: 
 
Table 2: Mean Ratio Axis Error and Standard Dev 
System North East Height 
Standard 0.66 0.64 0.52 
Track Model 0.58 0.68 0.74 
 
This also indicates that the standard deviations are a fair 
representation of the actual errors in both systems. 



 
 

  
The plots “Fig F15 R3A S” and “Fig F15 R3A TM” above 
show the height repeatability over time and the height 
standard deviations over time for the two systems on Row 
3. Row 3 is 6.6 metres away from the overhanging fence, 
and so there were enough natural obstacles so the systems 
normally had RTK resets at least once per lap. In the 
standard version, the heights are clearly more erratic. The 
standard deviations for that version indicate height errors 
that vary between 1 and 7 metres. The standard version 
managed 4 fixed amiguity resolutions, and the constrained 
version was able to resolve 18 times.  
 
 

 
 

 
 
The plots “Fig F15 R3B S” and “Fig F15 R3B TM” above 
show the height vs longitude for the standard (top) and 
constrained versions. The constrained version has much 
better repeatability, and although no control was available 
except the repeated track, it is clear there is a significant 
qualitative difference between the two systems. There is a 
1.0 metre excursion at –117.5 on the constrained height 
plot. This is reflected as a 4.5 metre standard deviation. 
 
 



 
 

 
 
The row 4 plots of height vs time are shown above on “Fig 
F15 R4A S” and “Fig F15 R4A TM”. The A and B plots 
show extreme variability for the standard model and very 
good repeatability for the track model OEM4 heights.  

  

  
The  plots Fig F15 R4B S, Fig F15 R4B TM seen above 
show the height vs longitude for the row 4 trajectory. The 
excursion seen at about –117.5 of the plot of the 
constrained system occurs because the horizontal position 
computed with poor geometry was outside the boundaries 
of all the planar sections of the track model, so no 
constraint could be found for it. The standard deviation of 
the height at this point is about 300 metres for both 
systems. This error can be eliminated simply by extending 
the planar section boundaries past the fence.  
 
 
 



 
 

 
 
The  plots “Fig F15 R4D S” and “Fig F15 R4D TM” seen 
above show the horizontal standard deviations for the 
standard and the constrained system. When the track model 
constraints act on the constrained system the horizontal 
standard deviations are almost always less than 3 metres, 
while the standard system has standard deviations which 
reach over 50 metres. So it appears that the track model is a 
significant help with the horizontal positions when the 
geometry is poor. This is partly because knowledge of 
height makes the other components more observable, but 
also because the tilt of the planar sections makes a portion 
of the horizontal position directly observable via the 
constraint. This is interesting because as the vehicle moves 
around the track which is composed of inwardly pointing 
planar sections, all of the position components are at one 
time or another directly observable by the planar section 
constraints. Provided the system can maintain carrier 
tracking on a minimal number of satellites, the accuracy 
improvement provided at one portion of the track can be 
carried forward to another portion of the track over which a 
different position component becomes observable. In this 
way eventually (say after 1 lap), all the position 
components can become known.  
 

During the portions of the test that did not incorporate 
operator induced reset, some estimate of the expected 
operational accuracy can be made. This is based on the 
computed standard deviations and the assumption that the 
standard deviations computed actually do represent the 
errors in the system. This assumption is a reasonable one 
given the results of the controlled reset test carried out on 
the data from row 1 collected Feb 15 in which the standard 
deviations are a fair reflection of the measured error levels 
on both the standard OEM4 and track model OEM4 
systems (see Table 2).  
 
In order to quantify the error level of single axis positions, 
all the single axis standard deviations were put into 0 to 0.5, 
greater than 0.5 and greater than 1.0 m categories and the 
total for each category was generated. Since data was 
collected from different rows for different lengths of times, 
the accumulations are normalised as if each row collected 
1000 seconds of data. The following tables summarise the 
results: 
 
Table 4:  Normalised Count of Errors Greater than 1 m  
Model 
Axis 

Row 1 Row 2 Row 3 Row 4 

Std N 29 0 139 199 
Std E 0 0 155 210 
Std U 34 0 449 900 
TM N 11 0 82 109 
TM E 0 0 54 75 
TM U 0 0 1 2 
 
Table 5: Normalised Count of Errors Greater than .5 m  
Model 
Axis 

Row 1 Row 2 Row 3 Row 4 

Std N 70 0 342 391 
Std E 24 0 357 390 
Std U 105 0 449 922 
TM N 55 0 163 248 
TM E 23 0 148 243 
TM U 0 0 1 21 
 
Table 6: Summary Reported Error Distribution 
Model 
Axis 

All Rows 
4000 pts # 
greater 
than 0.5 

Require
Only 
32% 
>0.5 

All Rows 
4000 pts # 
greater than 
1.0 

Require
Only 
5% 
>1.0 

Std N 803 20.1 367 9.1 
Std E 771 19.3 365 9.1 
Std U 1476 36.9 1383 34.5 
TM N 466 11.6 202 5.1 
TM E 414 10.3 129 3.2 
TM U 22 0.6 3 0.1 
 
The results show that the standard model fails to meet the 
requirements of 1.0 m 95% of the time and at 0.5 m 68% of 



the time. The OEM4 with supplimentary track model 
constraints has no difficulty with the 68% 0.5 m 
requirement and is within acceptable limits for the 95% 1.0 
m requirement. 
 
CONCLUSIONS 
 
From the test it is evident that the track model constraints 
improve the positioning accuracy significantly, up to a 
factor of 10 in many cases and sometimes more.  In most 
cases, the improvement is in height as one would expect, 
but in conditions of poor geometry the horizontal accuracy 
is also much better (sometimes more than 100 times better) 
in the constrained case. The horizontal accuracy also 
improves depending on the slope of the constraining section 
with respect to the local level because if there is a 
significant slope, then a component of the planar section’s 
normal vector will be parallel to the local level plane. 
 
The track model could be extended (extrapolated) outside 
the ribbon of the track so that bad geometry cases such as 
the one seen on row 4 also have the use of a planar 
constraint. 
 
The implementation on the OEM4 receiver is correct. There 
were a total of 11400 seconds of data, and less than 10 with 
height position errors of 1 metre or more.  
 
The reported standard deviations accurately reflect the 
position errors in the system. 
 
The idle time seen on the track model OEM4 is not 
significantly worse than on the standard OEM4. 
 
The base station can use MSL control as long as the 
adjustment process is carried out and applied to the base 
station co-ordinates. Note that the adjustment doesn’t 
account for the total undulation, all the computations in the 
filter are performed in ellipsoidal or ECEF co-ordinates 
anyway. The base station shift will account for undulation 
variations between the track model and the base station.  
 
The base station shift is crucial to the successful operation 
of the track model constraints. 
 
The track model constraints only work in the cases where 
there are at least 4 satellites. This isn’t a big a problem 
because of the 4600 samples take at row 4, there were only 
8 seconds of less than 4 satellite coverage.  
 
The track model constraints make it possible for the system 
to provide 1.0 m accuracy at the 2 sigma level (95%) or 0.5 
m accuracy at the 1 sigma (68%) level in a restricted 
environment such as the Fontana racetrack. 
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