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ABSTRACT

Absolute positioning systems, especially the Global P o -
sitioning  System (GPS), are playing an increasing role in
the tracking of motor vehicles. Such systems, however
were net designed to specifically track motor vehicles.
Apart from the start and finish of journeys, motor vehi-
cles are restricted to the mad network; a fact not reflected
by the position measurements. Techniques exist for car-
recting  the measurements according to a map of the net-
work but a mathematical framework for this correction
process  is lacking. The author has developed such a
framework resulting in a map-aided estimation  process
that takes into account the measurement noise statistics to
optimally translate the raw position measurements onto
the road network.  The theoratical performance of this es-
timator is derived and compared  with that achieved using
GPS measurements. The effect that Selective Availabil-
ity (SA) has on the map-aided estimator is analysed  and a
technique for reducing the effect of SA is demonstrated
In addition to the accuracy improvements, the map-aided
positioning framework also provides a means for readily
incorporationg other sources of positioning information.
Driver bchaviour,  mad type, and vehicle dynamics can
be used to make further improvements in positioning ac-
curacy and road identitication.’

1. INTRODUCTION

Motor  vehicles are. in general, restricted to travel on
roads but GPS and other absolute positioning systems
used to estimate their position do not inherently have the
ability to locate the vehicles onto the roads. The  various
noise sources that affect the signals and instrumentation
used by the positioning system result in the measured po-
sition not necessarily  lying on the road network Apart

from the beginning and end of a journey, a vehicle is
highly unlikely to be in the middle of a building as pas-
sibly  reported by a positioning system and therefore the
position estimate needs to be refined to make use of the
knowledge regarding the restrictions pIa on the vehi-
cle by the road network.

Map matching is well established as a means of utilising
map information in positiong systems[3,6]. The effec-
tiveness of the technique being illustrated by the signif-
icant proportion of IVHS (Intelligent Vehicle/Highway
System) navigation systems that  utilize  map matching
[ll].  Increasingly GPS is being integrated into these
systems to further enhance the navigation accuracy. De-
spite the prevalence of systems using map matching tech-
niques, the method appears to lack a mathematical frame-
work that will ensure the optimal use of the various  in-
formation sources.

This paper demonstrates a map-aided estimation process
within a well defined mathematical  framework that al-
lows w informaticn  and other sources of position in-
formation to be optimally incorporated into a GPS based
navigation system. The  framework and accompanying
estimator  are described fully in [15,16j  but a summary
of this work has been included to assist the understanding
of this paper. The  work presented represents a part of a
larger research program into the general theory of posi-
tioning systems [8] and the notation used in this paper is
based on this research.

Since the noise in the positioning system results in mea-
surements that do not necessarily lie on the mad, the
amount  of noise present must be at least the distance
from the measurement to the mad. It should be possible
to remove this noise to produce a better position estimate.
Translating the measurement  to the nearest point on the
mad network is the intuitive and most straight forward
method far achieving this. However, as will be shown, it
is not necessarily  the optimal position estimate and there
is a significant probability that the measurement will be
translated onto the wrong road. A MAP (maximum h

 estimator has been developed by the author to
optimally translate raw position measurements onto the
road network by taking into account the properties  of the
positioning system’s measurem entn noise characteristics.

The resultant increase in position es&nation accuracy



due to the mapaided  position esimaux  is derived for
zero-mean uncorelated gaussian measuremant t noise and
demonstrated using GPS data collected from static and
dynamic (vehicular) platforms. T h e  initial  results of the
GPS implemantation were clearly affected by Selective
Availability resulting in estimationdCSthasWhilSt

t?qlmalring all improvailea~  were not as good  as pre-

dicai Anewmodelofthem-t noise was
implemanted for GPS measurements reducing the effect
OfSAby~gitasa~errorwhicfiisthencor-
FcirBM map dg techniques me

-tswexepcssedbythe
map-aided estimator producing accuracies comparable to
that predicted by the theoretical analysis.

2. MAP-AIDED POSTIONNG

In order  to utilise road  network informaiton for map aided
positioning, the maps and the vehicle’s domain must be
modelled The roads have finite width but the lateral
position cn the road is assumed not to be of interest so
the road is modelled  by its centreline.  The restriction of
the vehicles domain to the road network 72 will be rep
resented by a uniform positional probability distribution
P(2).

P(2) =
{.

0  29R
k  2cR

where k is a constant defined such that 1’ kdz = I.
The uniform positional PDF implies that no knowledge
of the vehicle’s behaviour  has bun incorporated into the
estimation process except for the restricted domain. The
addition of supplementary information sources will be
discussed later in this paper.

The positioning system makes a measurement v, in the
presence of noise q, of the position 2 of a vehicle. In
general, positioning systems are affected by a number of
independent noise sour-cc so it is reasonable to assume
that the noise 7 has a gaussian  distribution which will
have a zero mean provided that the system is properly
calibrated

PM4 = ,-1 [<u - 2)=N-‘(u  - 4[3,

where

N = E [(a - W)=h - EM>] (4)

In the case of motor vehicle positioning, only two dimen-
sions are of interest The covariance matrix is therefore
d e f i n e d

which~alsobtapnssedintamsofamun-squared
error 2 and a matrix describing the geometrical effect of
the relative position of the positioning system  transpon-
ders [12].
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Figure I: Coordinate frame for map matching: The el-
lipse represents  a contour of constant error probability.
uq, anda,, are the standard deviations of the measure-
ment error a s  observed in the X frame. Similarly, u,,.
and ~7~.  arc the errors  observed in the Aframe.

using [13].  Eq. 3 expands to

where
“rlllr=-

UrllUo2
(8)

isthespatiaImrreLationc.oefficientand~r~  _< 1.

Having  quantitied  the assumptions regarding the vehi-
cle’s domain and the measurement noise of the position-
ing system, the estimation process to optimally combine
the position measurementt with the vehicle’s domain can
now be defined The MAP ESTIMATE
tion 2 from a given position m

of i: for a posi-
easurement y is defined

by [1,8,101

3. LONG STRAIGHT ROADS

(9)

The simplest scenario for matching a measured position
toamapisthearsewhucavthicleisknowntobe
travelling  on a very long straight road. The  road 72 will
be modelled  by its centreline and a new coordinate frame
X is defined by translating and rotating the global frame
Wsuchthattheroadiscollinearwitbthezt  axis(tig.  1).
lbustheroadisdefinedas

72={(~,,2*):22=0} (10)

The positional PDF p(z) is given by equation (1) where
for this example, k is a small positive constant  The
position measuremcnt~ and error covariances  rnd
inthcglobal~eWrrrc~~tdintotheXframe.
The MAP position estimate can now be determined by
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Figure  2: Pcrfomancc  of MAP & NP estimators and the
raw measurement as a function of road heading (or more
specifically,  the angle between the A and X frames. The
symmetry of tk equations meant that estimator errors
only needed t o  be plottedfor 0 5 B 5 2

solving equation (9) [ 151.

The estimated position is easily implemented as it is only
a function of the measurement and the relative geome-
Q of the positioning system. It is independent of the
magnitude of the errors.

Analysis of this estimator  proves it to be unbiased and
the variance is given by

4, = Cl- 314, (13)

As mentioned previously, the minimum amount of mea-
surement noise present can be determined by the dis-
tance between the measured position and the nearest  road.
Thus the nearest  point (NP) estimator is defined by trans-
bring a given position measurement to the nearest point
on the road network. By again using the local coordinate
frame X,theNP estimator is described by

5 = “s* [(Y - #(V - 211 (14)

=  (MlO) (15)

This is also an unbiased  but the variance of
rhecsimateislargathantheoptimal estimate from the
MAP estimator

4, = 4 (16)
ThedifWenctberweentheoptirnalh4APescimareand
the more intuitive NP &mator8riscsfromthehMP
estimator's utilisation of the spatial correlation of the
measurement errors As the correlation increases, the
huPcstima~variancedcamstscvureuallybccoming
the ideal &matorwhentheemPsarefullycarrclated
(r = Itl). To evaluate the estimator's true performance,

the source  and effect  of the error correlation need to be
investigated.

In two dimensions, normally disuibutcd measurement er-
rors result  in elliptical contour of constant error probabil-
ity. For a given  position, the orientation and eccentricity
of this ellipse  are determined by analyzing the position-
ingsystemintheworldaxmCnaEka.meW.  The spatial
correlation arising from this elliptical contour depends
ontheheadingofthtmadwithrespecttotheellipse.
Inthespcdalcastwhatthcellipscisadrcle,thercis
nosparialaxr&ionkspccriveofroadhcading. For a
general cilipse,  the spatial e l l i p se  is zero only when
themadisparalleItocithcraxisofthecUipsc.  ‘The effect
ofthecomlationasafnnctionofroadhcadingmustbe
determined.

Given a measurementz cmr distribution ( i n  w) for a given
position. it is easy to determine the angle the error ellipse
axis makes with the world coordinate frame. From this
the length of the minor and major axes can be deter-
mined, denoted u,,. and u,,.. The angle between  the
minor axis and the mad heading is denoted as B (fig-
ure 1) and referred to as the relative road heading. The
difference between the relative road heading and the uue
road heading a is determined by the orientation of the
error ellipse. As the relaitve road heading changes the
error  distribution seen  by the road coordinate frame A’
changes. By using standard coordinate transformation
techniques it can be shown that these error parameters as
a function of 3 are [15]

=m
2

=  u+hw+in28 (17)
2

urh  = +in2d++os2e (18)

utr:  = si.necoso(<,  - 4.) (1%

(
-I

r = 1+
4m

(m - 1)2
cose228 > (W

The performance of a positioning system is often quanto-
ficd  by the circular amr probable (CEP) [19]  but in this
instance, the measurements s are not distributed in two di-
mensionssotheRMScrmrbetweenthe&mateandthe
true position E is more suitable. The MAP and NP es-
tirx&xsarcunbi.asedandtkrefarc,theRMScrrorsare
equal to the estimator standard deviations.

c(2)  = ,/E [(z-5)=(5 -i)] (22)

= 09, dl - t’ (23)
e(5) = 08, (W

(25)

Using Eqs.  (17)-(21), these RMS errors are now plotted
as a function of the road heading (figure 2). The MAP
estimator is clearly a better &rnatnrthantheNPcsti-
mator,  equivalence only occurring  when the errors are
Ime (B = 0, $,.

The  RMS estimator amrs quantify the performance of
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Figure 3: Ebazorpe$o~e  indices (Eq. 28-30) are
plotted as a function of the measurement noise ratio m.

the estimators as a function of the road heading for a given
positioning system geometry and measurement noise but
they do not provide a means of evaluating the perfor-
mance of the estimators across an edre network. Since
the road headings across an entire network  can be as-
sumed to be distributed uniformly an average perfor-
mance can be determined  for each estimator given the
raw measurement errors The perforce index i is
defined below as the RMS error with respect to road
heading.

i2(z) =  E [e’(z)] (26)

m+li2(Z) = c+-
i2(m/) = &cm+ 1) (30)

The index for each esimator  is plotted  as a function of
themeasurementez7orvarianceratiominfigure3.  The
MAP estimator  is clearly the better estimator, it’s relative
performance increasing as the spatial correlation of the
datain~.

4. FINITE  STRAIGHT ROADS

The above analysis was for very long straight roads but in
anurbanareqtheroadscannotn~ybeconsidtred
long with respect to the positioning system errors. A
map-aided position estimator forartxdoffiniteleqth
is required. Asnaightroad7Zoflength21isdefinedby

72 = {(q,q)  : -1 5 21 5 I,22 = 0) (31)

Thevehicle’s&stenceonthismadisrepxsentedbya
uniform PDF (Eq.  1).

P(4 = f [,(,I +I)-  +1 -01 Q2) (32)
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Figure4: MAPestimaIor miancc on a finite road nor-
malised to the that of a vq long road. Each trace rep-
resents a different measurement error standard  deviation
to length ratio.

where  u(t) is the unit srep function. Using the same
measurement noise distribution as for the very long road,
the MAP andNP estimates can be shown to be[15]

I

(4 0) for M - !+&>l

i = (Yl - +2,0)  f o r  511 - zry2 c(33)
I I

(LO) for yl - ?;P& < 1

(-1,O)  for a < -I
z = (~~0) forju:I < I C-4

(I,O) for3 5 I

The  normalised variance of the MAP estimators is plot-
ted in figure 4 as a function of position. Each trace
represents a different measurem ent- errorr to road-length
ratio which  is effectively a measure of the relative length
of the road; the greater the ratio the shorter the relative
length of the road Position measurements that lie a sig-
nificant distance  away from the endpoints result in MAP
andNPe&matesthatarenodifT~ttothosepresented
earlier for very long roads. When the vehicle is closer
to the endpoints, there is an increased possibility that the
measurements will lie beyond the road endpoints result-
inginsomemeasurementss being translated to the nearest
endpoint The resulting error is smaller than would have
oUxrredhadthevehiclebeenonalongroad.  The finite
length of the road is a source of position information for
botheZinUxswirhfheMAPe&natoragaintxingthe
better of the two through the utilisation of the measure-
ment e r r o r  correlation

5. CURVEDROADS

Inanurbanareathemajorityofnxdsaresuaightbut
thecuwedmadsmuststiUbeinciudedinarnap-aidd
position estimation system. The process to determine the
MAPe&mateforthecurvedroad?Zissimilartothatfor
asuaightroad’Tbecnrxdroadisde&dby:

2 = {(%~2):~2 = p(q)} (35)



where  p(q) is a function that models the road's centre-
line to a desired accuracy.

The knowledge that the vehicle lies  on the road is again
represented by a uniform  probability disuibution (Eq.  1)
whenkistheinvaSeoftheleIlgthofthcrwd

A numk of possible functions  suitable  for modelling
roads wae investigated (see [15],[16]) but the current
digital map standards (for example GDF [41> and map
-es implied that a piecewise linear road model
would be no less accurate  than the higher order models.
IEismodelalsomeansrhattheaXireruadnetworkcan
be described  by a single component the finite straight

Asill~infigureZ,thecKve~.rnmodelledbya
sequence of linear  splines  functions pi(zl)  between the
positions Eil and E(i+l)l.

(37)

t P”(Zl)  fmh 5 =1 < Qntl)l

The linear splines  are described by

Pi(=i) = mitl +  ii for&l _< 21 < <(i+l)l

where

(38)

q= ((ii-l)2 - -52 = tan Bi
t(i+l)l  - til

(39)

bi = 62 - WEil (40)

To find the MAP position estimate (Eq. 12),  each spline
ofthecweisaeatedasasepararetoadandalocallyop
timum  position estimate Si is determined for that spline.
The overall position estimateisrhendeterminedbyeval-
natingeachlocalestima&todeterminetheoptim.altsti-
mate for the entire curve.

2i=Q~Pi(Z)P(y]Z),i=  I,...,n (41)

where

i = “p y PWPbl4 WI

i = Q y P(C)P(Ylii) (45)
1

TEeMAPandNPposition &matcsforagivaIsplineare

Figure  5: Piecewise road model  p(q) is shown  in con-
trast to the true road path

given  by finite road estimators (33) and (34) respectively.
ThcperfoxmanceoftheMAPandXPe%imatorsona
piecewise linear  road will be comparable to that of the
finite  straight road except that the endpoint effects will
only be noticeable at the curve endpoints and not at every
node of the piecewise  Curve. The only new problem  in-
troduced by curved roads is the possibility of ambiguous
and near ambiguous position estimates which arises from
the likelihood function p(ylz) having multiple maxima.
The reelution of ambiguous estimates,  if and when they
occur is addressed in detail in Scott [ 15].

6. ROAD NETWORKS

A road NETWORK is a set of roads along with a set of nodes
which join the various roads together. As this is very sim-
ilar t o  the piecewise linear curve  model, the same MAP
technique CD be used (Eqs. 41-45) where pi(zl)  rep-
resents the ith road of the network.  The resultant MAP
position estimate is optimal but the two-dimensional na-
ture of the ne twork introduces, for the same reasons as
for curved roads, the problem of ambiguous estimates.
The optimal estimate may actually be on the wrong road
resulting in a position estktefurtherfromtbeuuepo-
sition  than  the raw measurement. The local estimate  on
thecorrectmadisabetterestkxxe but it was slightly
less likely and hence not chosen. The problem lies in
determining which road the vehicle is travelling on. The
solution lies in the use of additional sources of informa-
tion.

The trajectory formed by the most recent  raw position
measurements can be used to determine which road the
vehicle is travelling  on and to provide a priori  informa-
tion on the next measured position of the vehicle. For
absolute positioning systems producing a sequence  of
position measurements, the optimal method for incorpo-
rating the measurem entss and the vehicle’s dynamics is
the Kalman filter [2].  Normally,  two decoupled  filters
would be required in order to model a motor vehicle’s
two degrees of freedom but the map-aided positioning
estimator results in all measurements lying on known
curves and thus the vehicle is reduced to a single de-
gree of freedom. Scott [15,16]  describes the required
coordinate transformations.

The above technique introduces a circular reference
which restricts its effectiveness. The Kalman filter while
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F@uc 6: GPS positioning errors using the SPS (Data
Set No. 2)

producing a more accurate position estimate, isalsobe
ing  used to identify the road upon which the vehicle is
travelling The problem lies with the need to translate
the measured position onto a road before the spatially
reduced~filtercanbeused.Toresolvethispara-
dox, the author proposes to treat  each road of the net-
work as though the vehicle were currently travelling on
it The MAP map-aided estimator in determining the

best  posi tion  estimate already  maps each position mea-
surement  onto every road (restricted to nearby roads in
practice) of the network Using track splitting techniques
designned  for tracking objects obscured ny measurement
clutter [l], a Kalman filter is instantiated for each road
using the road’s own sequence of measurements as the
filter input The variance of the kalman filtered position
estimate  then gives a measure of the likelihood that the
vehicle is travelling on that road. Combining this with
the  likelihood function of the measurement translation
provides a means for identifying which road the vehicle
is currently travelling on. In this manner, there is a much
reduced probability of ambiguous estimates  and the plot-
ted position of the vehicle will not be seen "jumping"
from toad to road.

7. STATIC GPS ANALYSIS

The  Standard Positioning Service (SPS) of GPS was cho-
sen to demonstrate the practical implemention  and to
evaluate the  real  performance of the mapaided  estimator
The increasing use of GPS in vehicle tracking applica-
tions  [l l] makes it particularly relevant while access to
all aspects of the position computation and access to Dif-
ferential GPS (DGPS) make performance calculations
straight forward. THe only problem with  applying the
map-aided position estimator to GPS is that the e r ro r s
are  temporally correlated which violates an implicit as-
sumption of the MAP estimator TbiscorreMonispn-
dominantly due to the effects of Selective Availability
[9].

35r

Figure 7: Performance of Jk map-aided estimator on an
arbitrary road through tk +ence  site using SPS data
(Data Set No. 2). Tk road heading is in degrees  nonh
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Figure 8: GPS positioning errors using tk SA corrected
(DGPS) data with a 60s update rate (Data Set No. 2)

7.1 Experimental Setup

The  practical implementation and evaluation of the map
aidedestkauxdoesnotre@edynamicGPSdara-an
arbiUaryslraightmadcanbed#medtopassthrougha
known point where static GPS dam has been collected.
As previously discussed curved roads are modelled  by
piecewise linear splines  and therefore a single straight
road test is sufficient The arbitrary road wa treated as
though it were infinite as urban roads are relatively long
with respect to GPS errors.

ATrimbleAccutimekhannelGPSruxiwwassituated
on a surveyed site with an unobstructed view of the sky
and position data was collected Position samples were
generated approximately  twice a second using only the
best 4 satellites to ensure that the effective positioning
system  geometry was as constant as possible. A Novatel
10channelnccivaatthesamesiawasustdtocollcctthe
satellite ephemais data which facilitated the  calculation
of the geometrical component of the error covariance
matrix (Eq. 6) for each of the position samples.
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Figure  9: Performance of tk map-aided estimator on
an arbirary  road through tk reference sire using SA
comraed  data  with a 60s  update rate (Data Set No. 2).
Tk road heading is in degrees north of East.

?L/o seu of data were collected, each reprexnting  a dif-
ferent set of 4 satellites  and each comprising a half hour
of obsWafiorls,  approxilnarely  1500 samples. As sum-
marked  in table 1 the observed positioning errors are
consisumt  with the expected  errors given the Horizontal
Dilution of Precision (HDOP) [5l. There  was however, a
signi6cant  difference bctween  the orientation of the error
ellipse as apected  from the s&.lite  geometry and that
deurminedbyadkct covarkmce  caIcuIarion  using the
measmcd  errors. ‘Ibis difkrenct  is due to the biasing
effect of Selective Availability which is clearly evident
in  a plot of the second dam set (figure 6).

72 Map-tided Estimator Performance

Tbetwodamsetswerepnxesxdbythemapaided
position &mator to produce three distinct  e&mates.
The wp estimatt  implemented the h4AP  estima-
tar @q. 12) using the measurement error distribution as
dexmnined  kom the satellite geometry. The h&4?&  es-
timattisthesameexcepcthatituststhe~~,~~tion
geueramd directly from the measurement  data Finally,
the NP &mate  is the peafest  point &mate @I* 15)
which is independent of the error  distribution.

The p  of each of these estimators was and-
ysed as a function of the road heading, the results of
which are plotted for the second data set in figure 7. For
each estimator,  the RMS error averaged over the range
of road headings is given in Table 1. The estimators
performed as expected with the exception that  the ef-
fect of the SA bias meant the best performance occurred
for the road heading that matched  the calculated error
orientation and not the expected orient&on. For both
ti sets, the MAP estimator performed best (and close
to the theoretical predictions) when given the most ac-
curate information regarding the error distribution; but
even when using an incorrect error model, there was still
sufficient spatial correlation evident for the MAPh,  to
perform better than the  NP estimator. Better relative per-
formance in-  would  be expected for worse satellite
geometries. The data collected was generated by good
geometries and consequently the error ellipse was not as
elongated as it might be and consequently the degree of
spatial correlation was lower.

73 Reducing Effects of SA

The  biases intrcduced  by SA are clearly responsible for
thedistionsseeninrhem easurcment  distributions. To
cfptknise  the performance of the mapaided  cstimamr,
a n e w measuranentamrmodelisrequiredthatmore
ac~urakly refiects  the biases introduced by Sk In the
long ram, SA biases reduce to approximately a gaussian
measuremem  error (71, but in the short term the effect of
SA~bevi~hedasaslowlyvaryingbias.  Assuch.itcan
be subtracted from position measurements  provided that
ameasureofthebiascanbemadeafregularintavals.
Ibis is the fundamental principle of lXfkrenti.al  GPS
wP9.

RealtimeDGPSforvehicularuserequiresthatthedif-
ferentiai ccmrcfion  be aansmined  to the moving vehi-
cle [14].  ‘Ibis  requires a signikanr  amount of infrasuuc-
cure as well as another piece of equipment in the  vehicle.
Instead of implementing such a system, corrections can
be generaM by using map matching techniques aimi-
IartothoseusedtocorrectDeadReckonedandinerrial
navigation systems [3,6l. By analysing  the map-a&i
pOSitiOIlesoimatcs, pods where the vehicle turned  can be



7hblc  2: Result of applying tk map-aided estinutors
to GPS &a collected  from a vehicle  moving along  a
straight mad for 80 seconds. Tk SA wrrccred  &la
war generated by a using a s’ngk diff’ntial  correction
genera&  01 rk turning poinr 41 tk start cftk nmd.

idaitihl  Curvcfiaing  tlxbniques wn be applied to the
raw -au to dculminc the cqlivalcnt  x.nWzure-
mait for the vehicle’s tlnnhg point which  can  thal be
cornpo&withthcknownmmingpoiutgenemtedbymap
marching to detmnine  a axrection vector (figure 10).

To aualyse  the potential benefits  of this form of differ-
ential corxtion,  two analyses WQC  performed using the
static GPS data using different update mtes;  once every
60 seconds, and once every 30 seconds. ‘I&e update
mtesaremuchlowerthanstandardDGPSupdat.erates
(10s  intmals) but they are more indic3tivc  of the update
rates achieved using the map  matched derived  correc-
tions;  corrections only being available when the vehicle’s
h&g changes signikmtly.  The analysis performed
on the SPS data was repezed  for the corrected d3ta  with
the nsuln  plotted in figures 8 and 9 and summarized
in table 1. The improvement in the GPS measurements
are comparable to the apected  results [Sl with a subse
quent imprwement  in the performance  of the mapaided
estimators.  The reduced effect of SA resulted  in the per-
formance of the MAP~p  estimator becoming closer to
that obtained from the direct covariance  calculation.

8. DYNAMIC GPS ANALYSIS

‘Ihe static GPS aperirnent results conlirrned that the
mapaid  estimators  gave signikant  improvements
over the raw GPS mea!imements. similar peaformance
foradynamicplatformcannotbeassumed.  AGPSre
ctivcr  mounted on a motor vehicle is subjected to a num-
ber of infl~enccs  that  were not present in the static ex-
periment, particularly signal blockage and multipath  due
to trees and urban canyons. In addition, the difker~tial
signalcomxtionwi.Uhavetobedctaminedffommap
matching techniques ratha than by direct calculation us-
ing a reference point. An apaiment  was under&en
to confirm that the proposed techniques will work effec-
tively for GPS position measurementS  made by a moving
motor vehicle.

A Trimble  Pad&&r Basic Plus 6&umel  receiver was
fitted to a motor vehicle which was driven around the
eastun suburbs of Sydney whilst logging position data
A Novatel Ukhannel  PC-based receiver was located at
a reference site to record the satellite observations  for
DGPS post- processing  and to calculate the geometric
component of the aror covziance.  The differentially
wrrtctedpositionswaecalculatedtoprovideauaccurate
csimae of the vehicle’s position fpr aror -on
andafterfurtherawtfitting,toprovideasourceof
digital map infolmation.

The resulting  data  was plontd  in Order  t0 examine the
effects  of Sh In the majority of cases, the effect of SA
manifested as a bias implying that the map matching
technique would provide a means of improving the posi-
tion aon xcuracy.  The exception tn this behaviour
occumdonmadswhereueesormllbuildingsorboth
resulted  in a the visible sateilite  constelhkon  constantly
changing; thus preventing  the bias of SA kom being
determmed.

A tight sccfion  of road exhibiting a consistent sate!-
axsubsion  was then chosen  to TV the dynamic

~onnancc  of Ihe map-aidrd &mators.  The section
of road was modelled by Wing a straight line m the
approp& segment of the DGPS data with fhe actual
.&cation  of the vehicle being taken as the nearest point
from a given DGPS measurem ent to this road model. In
wee with the map-aided estimator’s foxrnulation,
the SPS position data and error covariance  information
were then uansformed  into a new coordinate iiame  such
that the road ran along the 21 -axis. The error covariance
gave a HDGP of 1.8 and the distribution made an angle
of 64.1awith  the zl-axis.  The MAP and NP estimators
were applied to the  data, the results, when compared with
the DGPS positions, give the RMS errors expressed in
table 2. The uend expressed by the theory and confirmed
by the tic GPS results is also exhibited by the dynamic
results,  albeit only a relatively small sample.

The map matching technique for d.ifferentiaUy  correct-
ing SA errors was also implemented on the same section
of mad. & illusuated  by figure 10, the GPS positions
measured either side of the intersection arc fitted using
least square.s  to lines parallel to the roads being wv-
elled  The intersection of the Iwo lines of the trajectory
define the corner for the measurement sequence. The dif-
ferential correction  was then determined by comparing
the intersection  on the map with that determined form
the GPS measurements. This  correction was applied
totherawSPSdarapriortommslationintothemad
based co&inak  frame. The results of the correction
process  and subsequent map-aided positioning are given
in table 2. Again the map-aided estimator  performance
tefkcted  the thexetical results providing significant ac-
curacy improvements. Although, without the map-aided
cstimamn,  the map matched based differential correction
on its own providtd  a sign&xx  accuracy improvement.

Figure 10: lk use of sun&d  map matching  techniques
to determine a wemnbal  GPS correction.



9. FuTuRErnROVELMENTS

The anthor  has already identified a number of methods
for fixther  improving the miipaided  position a
and for strengthening  the lulderiying  positioning system
k3mework.  While Wme of c&e ideas are for the sole
psc of GPS hased tracking, orhers  are equally applicable
to au absolute positioning sy!xems.

9.l Ruad Identlfi;cadon

A key component of the map-aided cskzuor  is wrrut
road  identification. AU of the pcrfannance  figures de-
rived for the esknamr arc not applicable if the vehicle
has bcm  projected onto the wrong road Therefore, opti-
malopWionofthis eskxuor  relies on a robust method
forensmingthattheuxectroadhasbeenidentified.As
previously mentioned the spatially  reduced kalman  lilter
is upable  of providing road identification information
as well  as an improved position xcufacy.  The author
intecds  to further refine the technique for integrating the
kaJ.man  filter  and the map-aided eximator.  In addition,
the mapaided  estimation  framework will be expanded
to include map bas-zl  velocity conection.  This  will al-
low velocity measurun enu to be included in the spatially
re&lced  kalmarl  filrs.

A problem with this  kalman filter  approach arks when
the mtxsurexnent  errors are biased either directly by er-
rur source  such as SA in GPS or indkxxly  through
map registration ~~0x-s.  It is possible that in these situ-
ations, the bias will be sufficient to cause the meaSured
vehicle trajectory to best match with the wrong road.
The effecziveness  of the differential technique previously
described slowly degrades as the SA changes. Latera
m are. easily removed by the map-aided positioning
but any change in the longitudinal bias will remain unde-
tczted.  If the longitudinal error grows sufficiently large,
the wrong intersection could be identikd  at the next tmn-
ing  point which in turn compounds when the differe~~tial
correction  is defmnined. ‘Ib avoid this problem, the SA
cmxtion  model needs incorpomfe  a drift rate and more
SQphisticartd  map matching techniques 131  anployed  to
minim&  the xisk of incxxrect  road identification. The
kalmanbItexcanaLsobeimprovedbymodifyingthesys-
tanmodeltoin~corrclatednoiseandbiasts[lS].

A further technique, specik  to GPS and yet to be ex-
paimanally xrikzd, is to utilisc all visible satellites to
calculate a set of position &mates atanygime+och
by taking all possible combinations of 4 satellites. Gen-
aallyakastSq~approachisusedtodetexminethe
best  position &mate using all visible satellites but the
SA effects are noOt a Gaukan noise and as a amsequencc
theLtanSquarese9imate may not represent the optimal
use of the available information. It may be possible to
utilise  the spread of measurements for a given  position
tobetterdeuzminethecomnroad.

93 Supplementary Information !hurces

Tbe perfomunct  of the MAP map-aided position es&
mator is easily improved through the incorpomtion  of
additional infdon sources such as:

Road ‘Ispc:  Each road type  is assigned a probability
xxxrding  to it’s i&Tic  flow capability - a vehicle is
morelikelytobeonamajorroadthanthelanerunning
parallel u) the major road.

Rood Rdcx Any rule resuicting the vehicle’s keedom,
(e.g. No Right ‘I1pn.  one way streets.  etc)  can be mod-
ekdbysuxing appropriate probabilities to zero. Vehicie
speedscanalsobeusedtodiff~tiatelocalroads(low
8peed limits) from aprcssways (high speed limits).

Roue Knowledge: Dixct route knowledge or route pref-
erences as deuxmined  from past journeys 1171  (driver
behaviour)  cm be used to bias the positional PDFs in a
mannersimilartotheroadtypeabove.

?he incorporation  of this ty$e  of information is suaight
forward as the infomxxion  is often available with the
current digital map formars  (e.g. GDF 141)  and it applies
uniformly to each road. That is, the positional PDF for
agivenroad~sstilIormandasaresultthel~po_
sition  cstima~ (Eq. 41) is unaffected by the additional
information. The inform&on,  incorpomted  by modify-
ing the positional PDF of each road, is only used when
determining  the globally cptimal  e&mate  (Eq.  45).

Other SOW and forms of information are available,
the most notable being the use of uaflic  flow rates. For
example, a vehicle on a given  road is more likely to be
found at the intersections. This knowledge, and other
knowledge of a similar form, can be represented by a
non-uniform positional PDF implying that  the MAP es-
limak  will need  to be derived from first principles. This
isnotquitethe~asitmnbeshownthataMAPesti_
mate based on a uniform PDF does not lose any relevant
position info&on  [ 151 and consequently the estimate
can he refined if and when other information becomes
available such as that rcpnsented  by a non-uniform  PDF.

10. CONCLUSION

The proposed mapaided  position &mation  system
based on maximum d posrrrioti  principles greatly in-
creascstheaaxacyofanypositioni.ngsysvmusedto
track objaxs  with a restricted operatkg  domain; most
partidy motor vehicles, but also trains and trams.
The position estima& process results in all measure-
menrsbeingtxMatedontoamapsuchthatal.lofrhe
position &mates now lie on known curves allowing
a one-dimensional kahnan  fl& to further  improve the
tkxurxy incorporating the dynamics of the vehicle be-
ing tracked. The mathanatical  tiework  of the h&W
estimatorusedalsoreadilyallcnvsfulthasourctsofin-
formation regarding  the vehicle’s position and possible
movements robe optimally in-.

The practical implementation of the map matching
frameworkandasso&ede&matorwasconfirmedvia
experiments conducted using GPS StandardPosition  Sex-



vice dam  in static  and dynamic  environments. These
aperimezlts  also WIlfiImed  the simator’s the0rekal
perfomxmz  ‘Ihc biases introduced by Selectin  Avail-
~bilityw~significantly~uccdbyambiningthernag
8idedestimatorwithmapmatchingtcchniquestoprovide
rdifkmtialcorrazion

Tkverailpositioaestimate,includingthemap~ed
difkcz~tial  corr&on,  zc deurmined  kom straight for-
wardequa&msGivatss3toasuitabledigitalmapof
rhcmadnctwork,themapmatchedestimauawuldbe
aklywwithi.naGPSrtctivu.
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