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ABSTRACT

Absolute positioning systems, especidly the Global Po-
stioning System (GPS), ar e playing an increasing role in
the tracking of motor vehicles. Such systems, however
were net designed to specificaly track motor vehicles.
Apart from the gtart and finish of journeys, motor vehi-
cles are restricted to the mad network; afact not reflected
by the position measurements. Techniques exist for ca-
recting the measurements according to a map of the net-
work but a mathematical framework for this correction
process is lacking. The author has developed such a
framework resulting in a map-aided estimation process
that takes into account the measurement noise statistics to
optimally trandate the raw position measurements onto
the road network. The theoraticd performance of this es-
timator is derived and compared with that achieved using
GPS measurements. The effect that Selective Availabil-
ity (SA) has on the map-aided estimator is andysed and a
technique for reducing the effect of SA is demonstrated
In addition to the accuracy improvements, the map-aided
positioning framework aso provides a means for readily
incorporationg other sources of positioning information.
Driver bchaviour, mad type, and vehicle dynamics can
be used to make further improvements in positioning ac-
curacy and road identitication.’

1. INTRODUCTION

Motor vehicles are. in general, restricted to travel on
roads but GPS and other absolute positioning systems
used to estimate their position do not inherently have the
ability to locate the vehicles onto the roads. The various
noise ources that affect the signals and instrumentation
used by the positioning system result in the measured po-
gtion not necessaily lying on the road network Apart

from the beginning and end of ajourney, a vehicleis
highly unlikely to be in the middle of a building as pas-
shly reported by a positioning system and therefore the
position esimate needs to berefined to make use of the
knowledge regarding the restrictions placed on the vehi-
cle by the road network.

Map méatching is well established as a means of utilising
map information in positiong systems3,6]. The effec-
tiveness of the technique being illustrated by the signif-
icant proportion of IVHS (Intelligent Vehicle/Highway
System) navigation systems tha utilize map matching
[I]. Increasingly GPS is being integrated into these
systems to further enhance the navigation accuracy. De-
pite the prevalence of systems using map matching tech-
niques, the method appears to lack a mathematical frame-
work that will ensure the optima use of the various in-
formation sources.

This paper demonstrates a map-aided estimation process
within a wel defined mathematicd framework that al-
lows map informaticn and other sources of position in-
formation to be optimaly incorporated into a GPS based
navigation system. The framework and accompanying
estimator ae described fully in [15,16] but a summary
of this work has been included to assist the understanding
of this paper. The work presented represents a part of a
larger research program into the genera theory of posi-
tioning systems [8] and the notation used in this paper is
based on thisresearch.

Since the noise in the positioning system results in mea-
surements that do not necessarily lie on the mad, the
amount Of noise present must be at least the distance
from the mesremat to the mad. It should be possible
to remove this noise to produce abetter position estimate.
Trandating the measurement to the nearest point on the
mad network is the intuitive and most straight forward
method far achieving this. However, as will be shown, it
IS not necessarily the optimal position edimate and there
isa ggnificant probability that the measurement will be
trandated onto the wrong road. A MAP (maximum h
posteriori) estimator has been developed by the author to
optimally trandate raw position measurements onto the
road network by taking into account the properties of the
positioning system’s measurem @tnoise characteristics.

The resultant increase in position es& nation accuracy



due to the mapaided position estimator is derived for
Zaoimenunoordaedgausianmessremat - noise and
demongtrated using GPS data collected from static and
dynamic (vehicular) platforms. The initid results of the
GPS implemantation were clearly afeded by Sdlective
Availability resulting in estimation accuracies that, whilst
mmcnung all mpmvunml, were not as good as pre-
dicied. Anewmodel of themeasuremeat noise was
implemanted for GPS measurements reducing the effect
of SA by treating it as a drift error which is then cor-
rected using standard mgp matching techniques me
SA corrected GPS measurements were processed by the
map-aided estimator producing accuracies comparable to
that predicted by the theoreticd andlysis.

2. MAP-AIDED POSTIONNG

In order 1o utilise road network Informaiton for map aided
positioning, the maps and the vehicle's domain must be
modelled The roads have finite width but the lateral
position cn the road is assumed not to be of interes so
the road ismodelled by its centreline. The restriction of
the vehicles domain to the road network 72 will be rep
re(smted by a uniform positional probability distribution
p(z).
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where k is a constant defined such that f,, kdz = I.
The uniform positional PDF implies that no knowledge
of the vehicle's behaviour has bun incorporated into the
estimation process except for the restricted domain. The
addition of supplementary information sources will be
discussed later in this paper.

The positioning system makes a measurement y, in the
presance of noise n, of the position 2 of a vehicle. In
general, postioning systems are affected by a number of
independent noise sour-cc S0 it is reasonable to assume
that the noise n has agaussan distribution which will
have a zero mean provided that the system is properly
caibrated
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In the case of motor vehicle positioning, only two dimen-
sions are of interest The covariance matrix is therefore
defined
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which can also be in terms of a mean-squared

error 2 and a matrix describing the geometrical effect of
the relative position of the postioning sysem transpon-

ders [12]. o
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Figure I: Coordinateframe for mgp matching: The el-
lipse represents a contour of constant error probability.
ayq, and o, are the standard deviations of the measure-
ment error as observed in the X frame. Similarly, e,
and &, arc the errors observed in the Aframe.

using [13]. Eq. 3 expands to
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is the spatial correlation coefficient and |r| < 1.

Having quantitied the assumptions regarding the vehi-
cle’'s domain and the measurement noise of the position-
ing system, the estimation process to optimally combine
the position measurement with the vehicle's domain can
now bedefined The MAP estimate of Z for a posi-
tion 2 from a given position measurement y is defined
by [1,8,101

where

% = mgmax [p(z)p(yl=)] 9)

3. LONG STRAIGHT ROADS

The Simplest scenario for matching a measured position
to a map is the case where a vehicle is known to be
travelling on a very long straight road. The road R will
be modelled by its centreline and a new coordinate frame
& isdefined by trandating and rotating the global frame
W such that the road is collinear with the =, axis (fig. 1).
Thus the road is defined as

R ={(z1,22): 22 =0} (10)

The positional PDF p(z) is given by equation (1) where
for this example, k is a smal positive constant The
position measurement  and error covariances measured
in the global frame W are transformed into the X frame.
The MAP position esimete can now be determined by
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Figure 2: Pcrfomancc of MAP & NP estimators and tre
raw measurement as a function of road heading (or more
specifically, theangle between the A and &' frames. The
symmetry of tk equations meant that estimator errors
only needed to be plottedfor 0 <8<%

solving equation (9) [15].

3 = (m—-ﬁfﬂ;—rmﬁ) (1
T
= (n-T2no) (12)

The estimated position is easily implemented as it is only
afunction of the measurement and the relative geome-
try of the podtioning system. It is independent of the
magnitude of the erors.

Analysis of this estimator proves it to be unbiased and
the variance is given by

Uil =(1- ’J)aﬁx (13)

As mentioned previoudy, the minimum amount of mea
surement noise present can be determined by the dis
tance between the measured position and the NEArest road.
Thus the nearest point (NP) estimator is defined by trans:
bring a given position measurement to the nearest point
on the road network. By again using the local coordinate
frame X,theNP esimator isdescribed by

2 = mmn([y-2"(w-2)] (1
= (%,0) (15)

This is also an onbiased estimator but the variance of
the estimate is larger than the optimal esimate fromthe
MAP estimator

6%1 = 0’3" (16)
The difference between the optimal MAP estimate and
the more intuitive NP estimator arises from the MAP
estimator's utilisation of the spatial correlaion of the
measurement errors As the corrdaion increeses, the
MAP estimator variance decreases eventually becoming
the ided estimator when the errors are fully correlated
(r = £1). To evaluate the estimator's true performance,

the source and effect of the error correlation need to be
investigated.

In two dimensions, normally disuibutcd measurement er-
rorsresult in elliptical contour of constant error probabil-
ity. For agiven position, the orientation and eccentricity
of this dlipse are determined by analyzing the position-
ing system in the world coardinate frame W. The spatial
correlation arising framthis elliptical contour depends
on the heading of the road with respect to the ellipse.
In the special case where the ellipse is a circle, there is
no spatial correlation frrespective of road heading. Fora
generd cilipse, the spatia el lipse iszero only when
the road is parallel to either axis of the ellipse. ‘The effect
of the correlation as a function of road heading must be
determined.

Given a mesuamatemr distribution (in W) for a given
pogition. it iseasy to determine the angle the error elipse
axis makes with the world coordinate frame. From this
the length of the minor and maor axes can be deter-
mined, denatede,, and a,,. The angle between the
minor axis and the mad heading is denoted as é (fig-
ure 1) and referred to as the relative road heading. The
difference between the relaive road hesdrgand the uue
road heading « is determined by the orientation of the
error elipse. As the relaitve road heading changes the
error distribution seen by the road coordinate frame &
changes. By using standard coordinate transformation
techniques it anbe shown that these error parameters as
a function of 3 ae[15

en? = o2 costd+ o2, sin?f (17)

on’ = o2 sin’f+ 0%, cos’d (18)

On: - sinfcosf(c?, — o) (19)
4 -1

r o= (1+(m—_r_nl)2msec229> (20)

m = o /a3, (e2))

The performance of a positioning SyStem is often quanto-
ficd by the circular amr probable (CEP) [19 but in this
ingtance, the mesravels  are not distributed in two di-
mensions so the RMS error between the estimate and the
true position z is more suitable. The MAP and NP es-
timators are unbiased and therefore, the RMS errors are
equd to the edtimator standard deviations.

(@ =E [E-27E -8)] @

= o, V1-9 (23)
e(5) = oy (24)
e(y) = (Joi +a%, (25)

Using Egs. (17)-(21), these RMS errors are now datiedl
asa function of the road heading (figure 2). The MAP
esimator isdearly abetter & rnatnrthantheN Pcsti-
mator, equivalence only occurring when the errors are
uncorrelated (6 = O, ).

The RMS edimaor amrs quantify the performance of
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Figure 3: Estimator performance indices (Eq. 28-30) are
plotted as a function of the measurement noise ratio m.

the estimators as a function 0f the road heading for a given
positioning system geometry and measurement noise but
they do not provide a measof evauating the perfor-
mance of the estimators across an edre network. Since
the road headings across an entire network can be as-
sumed to be distributed uniformly an average perfor-
mance can be determined for each estimator given the
raw measurement arars The performance index i is
defined below as the RMS error with respect to road
heading.

#(z) = E [é(z)] (26)
= 2 ie’(z)d& 27

T Jo
i*z) = o5 vm (28)
#z) = a':.-rl;—l (29)
#y) = o (m+1) (30)

The index for each esmator is plotted asa function of
the measurement error variance ratio m in figure 3. The
MAP estimator is clearly the better etimator, it's rddive
performance increasing as the spatial correlation of the
data increases.

4. FINITE STRAIGHT ROADS

The above analysis was for very long straight roads but in
an urban area, the roads cannot necessarily be considered
long with respect to the positioning system errors. A
map-aided position estimator for a road of finite length
Isrequired. A straight road R of length 21 is defined by

R ={(z1,z2): 1<z <l,;a=0} (31

The vehicle's existence on this road is represeated by a
uniform PDF (Eq. 1).
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Figure4: MAP estimator varignce on afinite road nor-

malised to thethat of a very long road. Each trace rep-

resents a different measurement error sandard deviation
to length ratio.

where u(t) is the unit srep function. Using the same
messrement noise distribution as for the very long road,
treMAPad\IPedimetescan be shown to be [15]

(-1,0) foryl—gi'-rm >1

¢ = { (n-2rm0) for|n -;-;',—;’;rw] <(33)
(1,0 foryl—;i-rwsl
(~1,0) for <1

E = (n.0) forly| < | (34
(1,0) fory <1

The normdlised variance of the MAP esimaorsis plot-
ted in figure 4 as a function of position. Each trace
represants a different measurem ent-aror to road-length
ratio which is effectively a measure of the relative length
of the road; the greater the ratio the shorter the relative
length of the road Position measurements that lie a sig-
nificant digance away from the endpoints result in MAP
and NP estimates that are no different to those presented
earlier for very long roads. When the vehicle is closer
to the endpoints, there is an increased possibility that the
measurements will lie beyond the road endpoints result-
inginsomemesararatsbeing trandated to the nearest
endpoint The resulting error is smaller than would have
occurred had the vehicle been on a long road. The finite
length of the road is a source of position information for
both estimators with the MAP estimator again being the
better of the two through the utilisation of the measure-
ment error correlation

5. CURVEDROADS

In an urban area the majority of roads are straight but
the curved roads must still be included in a map-aided
position eimation system. Theprocess to determine the
MAP estimate for the curved road R is similar to that for
a straight road. The curved road is defined by:

R - {(z1,22) 1 22 - p(z,)} (39)



where p(z1) is a function that models the road's centre-
lineto adesired accuracy.

The knowledge that the vehiclelies on the road is again
represented by a uniform  probability disuibution (Eq. 1)
where k is the inverse of the length of the road.

[ rmdz] o

A number of possible functions suitable for modelling

roads wae investigated (see [15],[16]) but the current
digital map standards (for example GDF {4]) and map
accuracies Implied that a piecewise linear road model
would be no less accurate than the higher order models.
This model also means that the entire road network can
be described by a single component the finite straight
road.

As illustrated in figure 5, the curve = is modelled by a
sequence of linear splines functions pi(z1) between the
positions &ir and &i+1)1-

pi(z1) forény <21 <&
pa(z1) foréy £z <én
plz) = . (37)
pn(z1) foréa1 € 71 < §(atin
The linear splines are described by

pi(zi)=mizy + bifor{n<zi<§ipn  (38)

where
€1 — &i2
—-— — —tané;
Eaent — €in (39)
b = &z ~ mia (40)

To find the MAP postion estimate (Eq. 12), each spline
of the curve is treated as a separate road and a locally op-
timum position estimate ; is determined for that spline.
The overall position estimate is then determined by eval-
uating each local estimate to determine the optimal esti-
mate for the entire curve.

£ =agmaxpi(2)p(ylz)i=1,. . .2 (4]

where
pi(z) = { 651 < 21 <§E+nn 2= p,(:le42)
E(--u) -1
E = [ 1+ [A(=)] ] (43)
& = agmxp(z)p(ylz) (44)
2 = agmaxp(d)p(yl:) @5)

The MAP and NP position estimates for a given spline are

p,‘,z(x'.)

P.‘+1(11) §i+2
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Figure 5: Piecewise road model p(z;) IS shown in con-
trast to the true road path Z.

given by firteroad estimators (33) and (34) respectively.
The performance of the MAP and NP estimators on a
piecewise liner road will be comparable to that of the
finite straight road except that the endpoint effects will
only be noticeable at the curve endpoints and not a every
node of the piecewise Curve. The only new problem in-
troduced by curved roads is the possibility of ambiguous
and near ambiguous position estimates which arises from
the likelihood function p(y!z) having multiple maxima
The redlution of ambiguous esimates, if and when they
occur is addressed in detail in Scott [ 19).

6. ROAD NETWORKS

A road NEWOKKis a set of roads along with a set of nodes
which join the vaiousroads together. As thisis very sm-
ilar to the piecewise linear curve modd, the same MeaP
technique CD be used (Egs 41-45) where pi(z,) rep-

resents the ith road of the network. The resultant MAP
position estimate is optimal but the two-dimensional na

ture of the network introduces, for the same reasons as
for curved roads, the problem of ambiguous estimates.
The optima estimate may actudly be on the wrong road
resulting in a position estimate further from the true po-
stion than the raw measurement. The local estimate on
the correct road is a better estimate but it was dightly
less likely and hence not chosen. The problem liesin
determining which road the vehicle is travelling on. The
solution lies in the use of additional sources of informa-

tion.

Thetragjectory formed by the most recent raw position
measurements can be used to determine which road the
vehicle is traveling on and to provide a priori informa-
tion on the next measured postion of the vehicle. For
absolute positioning systems producing a sequence of
position measurements the optima method for incorpo-
rating the measurem ents and the vehicle's dynamics is
the Kalman filter [2]. Normaly, two decoupled filters
would be required in order to model amotor vehicle's
two degrees of frasctam but the map-aided positioning
egimator results in al measurements lying on known
aurves and thus the vehicle is reduced to a single de-
gree of freedom. Scott [15,16] describesthe required
coardinetetransformations.

The above technique introduces a circular reference
which redtricts its effectiveness. The Kalman filter while
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Figure 6: GPS positioning errors using teSPS (Data
Set No. 2)

producing a more accurate position estimate isal sobe
ing used to identify the road upon which the vehicle is
travelling The problem lies with the need to trandate
the measured position onto a road before the spatially
reduced Kalman filter can be used. To resolve this para-
dox, the author proposes to treat eech road of the net-
work as though the vehicle were currently travelling on
it The MAP map-aided estimator in determining the
best posifion estimate dready maps each position mea
surement onto every road (retricted to nearby roads in
practice) of the network Using track splitting techniques
designned for tracking objects obscured ny measurement
clutter [I], aKaman filter isinstantiated for each road
using the road's own sequence of measurements as the
filter input The variance of the kalman filtered position
estimate then gives a measure of the likelihood that the
vehicle is travelling on that road. Combining this with
the likelihood function of the measurement trandation
provides a means for identifying which road the vehicle
Is currently travelling on. In this manner, there is a much
reduced probability of ambiguous esimates and the plot-
ted position of the vehicle will not be seen "jumping”
from toad to road.

7. STATIC GPS ANALYSIS

The Standard Positioning Service (SPS) of GPS was cho-
sen to demonstrate the practical implemention and to
evauate the real performance of the mapaided estimator
The increasing use of GPS in vehicle tracking gpplica
tions [I I] makes it particularly relevant while access to
dl aspects of the position computation and access to Dif-
ferentid GPS (DGPS) make paformancecalculations
straight forward. THe only problem with applying the
map-aided position estimator to GPS is that the errors
ae temporally correlated which violates an implicit as-
sumption of the MAP estimator This correlation is pre-
dominantly due to the effects of Selective Availability
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Figure 7: Performance Of Jk map-aided estimator on an
arbitrary road through tk reference site using SPS data
(Data Set No. 2). Tk road hesdirgisin degrees nonh
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Figure 8: GPS positioning errors using tk SA corrected
(DGPS) data With a60s update rate (Data Set No. 2)

7.1 Experimental Setup

The practical implementation and evaluation of the map
aided estimator does not require dynamic GPS data - an
arbitrary straight road can be deemed to pass through a
known point where gatic GPS dam has been collected.
As previoudly discussed curved roads are moddled by
piecewise linear glines and therefore a single straight
road test issufficient The arbitrary road watreated as
though it were irfinite as urban roads are relatively long
with respect to GPS errors.

A Trimble Accutime 6~channel GPS receiver was situated
on a surveyed site with an unobstructed view of the sky
and pogtion data was collected Position samples were
generated approximately twice a second using only the
best 4 satellites to ensure that the effective positioning
sysem geometry was as constant as possible. A Novae
10 channel receiver at the same site was used to collect the
satellite ephemeris data which facilitated the calculation
of the geometrical component of the error covaiance
matrix (Eq. 6) for each of the position samples.



SPS SA Corrected SA Corrected
(60s Update) (30s Update)
Set 1 1Set2!|Ser 1 Set 2 Ser 1 Set2

Mean HDOP 16 15 16 15 1.6 1.5
Mean (HDCP) Error Angle 162" 34.6 162° 34.6" 162° 34.6°
Statistical (Datd) Error Angle 21T 883" 40.5° 752" 38.3" 704
GPS RMS Error (m) 35.0 313 19.0 16.0 105 9.3
NP RMS Error (m) 247 210 134 111 74 6.4
MAP (HDOP) RMS Error (m) 253 22.8 132 110 73 6.3
MAP (Data) RMS Error (m) 245 155 13.0 102 72 5.9

Table 1: Staric GPS analysis of map-aided positioning using the result of two GPS data collection experiments. The
results were analysed using two sources of covariance information - tk HDOP/sateilite geometry and statristical analysis

of the GPS errors.
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Figure 9: Performance of tk map-aided estimator on
an arbirrary road through tk reference site using SA
corrected data with a 60s update rate (Data Set No. 2).
Tk road heading is in degrees north of East.

Two sets of data were collected, each represeating a dif-
ferent set of 4 satellites and each comprising a haf hour
of observations, approximately 1500 samples. AS sum-
marised in table 1 the observed positioning errors are
consistent With the expected errors given the Horizontd
Dilution of Precision (HDOP)[5]. There was however, a
significant difference between the orientation of the error
ellipse as expected from the satellite geometry and that
determined by a direct covariance calculation using the
measured eT0rs. ‘I bis difference is due to the biasing
effect of Selective Availability which is clearly evident
inaplot of the second data set (figure 6).

72 Map—tided Estimator Performance

The two data sets were processed by the map-aided
position estimator to produce three distinct estimates.
The MAPynop estimate implemented the MAP estima-
tor (Eq. 12) using the measurement error distribution as
determined from the satellite geometry. The MAPpy, €5
timate is the same except that it uses the errcr distribution
generated directly from the measurement data Finally,
the NP estimate iS the nearest point estimate (Eq. 15)
which is independent of the errar distribution.

The performance of each of these estimators was and-
ysed as a function of the road heading, the results of
which are plotted for the second data set in figure 7. For
each esimator, the RMS error averaged over the range
of road headings is given in Table 1. The estimators
performed as expected with the exception tha the ef-
fect of the SA bias meant the best performance occurred
for the road heading ta&matched the calculated error
orientation and not the expected orient&on. For both
data sets, the MAP estimator performed best (and dose
to the theoretica predictions) when given the most ac-

curate information regarding the error distribution; but
even when using an incorrect error model, there was ill

affident spatid correlation evident for the MAPp,, to
perform better than the NP estimator. Better relative per-

formanceincreases would be expected for worse satellite
geometries. The daa collected was generated by good

geometries and consequently the error ellipse was not as

elongated as it might be and consequently the degree of

spatia correlation was lower.

73 Reducing Effects of SA

The biases intreduced by SA are clearly responsible for
the distortions seen in the measurement distributions. To
optimise the performance of the map-aided estimator,
anewmeasurement exrror model is required that more
accurately reflects the biases introduced by Sk In the
long term, SA biases reduce to approximately a gaussian
measurement error [7], but in the short term the effect of
SAcanbevicwed as a slowly varying bias. Assuch, itcan
be subtracted from position measurements provided that
a measure of the bias can be made at regular intervals.
This is the fundamental principle of Differental GPS
(DGPS).

Real time DGPS for vehicular use requires that the dif-
ferential correction be transmitted to the moving vehi-
cle[14]. This requires a significant amount of infrastruc-
ture as well as another piece of equipment in the vehicle.
Instead of implementing such a system, corrections can
be generated by using map matching techniques simi-
lar 1o those used to correct Dead Reckoned and inertial
navigation systems [3, 6). By analysing the map-aided
position estimates, points where the vehicle turned can be



SPS | SA Comrected
GPS RS Exror (m) | 4.6 318
NP RMS Error (m) | 41.8 163
| MAP RMS Eror (m) | 268 134

Table 2: Results of applying the map-aided estimators
to GPS &acollected from a vehicle moving along a
straight mad for 80 seconds. Tk SA corrected data
war generated by a using a single differential correction
generated at the turning point at tk start of the road.

identified. Curve fitting techniques can be applied to the
raw measurements to determine the equivalent measure-
ment for the vehicle's mrming point which can thea be
compared with the known turning point generated by map
marching to determine acorrection vector (figure 10).

To analyse the potential benefits of this form of differ-
entia correction, two analyses were performed using the
datic GPS data using different update rates; once every
60 seconds, and once every 30 seconds. These update
rates are much lower than standard DGPS update rates
(10s intervals) but they are more indicative of the update
rates achieved using the map matched derived correc-
tions; corrections only being available when the vehicle's
beading changes significantly. The analysis performed
on the SPS data was repeated for the corrected data with
the results plotted in figures 8 and 9 and summarised
in table 1. The improvement in the GPS measurements
are comparable to the expected results {5] with a subse-
quent improvement in the performance of the map-aided
estimators. The reduced effect of SA resulted in the per-
formance of the MAPxpop estimator becoming closer to
that obtained from the direct covariance calculation.

8. DYNAMIC GPS ANALYSIS

The static GPS experiment results confirmed that the
map-aided estimators gave significant improvements
over the raw GPS measuremeats. Similar performance
for a dynamic plarform cannot be assumed. A GPS re-
csiver mounted on a motor vehicle is subjected to a num-
ber of influences that were not present in the static ex-
periment, particularly signal blockage and multipath due
to trees and urban canyons. In addition, the differential
signal correction will have to be determined from map
matching techniques rather than by direct calculation us-
ing a reference point. An experiment was undertaken
to confirm that the proposed techniques will work effec-
tively for GPS position measurements made by a moving
motor vehicle.

A Trimble Pathfinder Basic Plus 6-channel receiver was
fitted to @ motor vehicle which was driven around the
eastern Suburbs of Sydney whilst logging position data
A Novatel 10-channel PC-based receiver was located at
a reference Site to record the satellite observations for
DGPS post- processing and to caculate the geometric
component of the errar covariance. The differentialy
corrected positions were calculated to provide an accurate
estimate of the vehicle’s position for emror determination
and after further curve fiting, to provide a source of
digital map informarion.

The resulting data was plotted in order to examine the
effects of SA. In the mgjority of cases, the effect of SA
manifested as a bias implying that the map matching
technique would provide a means of improving the posi-
tion estimation accuracy. The exception to this behaviour
occurred on roads where trees or tall buildings or both
resulted in a the visible sateilite constellation constantly
changing; thus preventing the bias of SA from being
determined.
A straight section Of road exhibiting a consistent sate!-
lite constellaon Was then chosen to test the dynamic
performance Of the map-aided estimatars. The section
of road was modelled by fitting a straight line to the
iate segment Of the DGPS data with the actual

location of the vehicle being taken as the nearest point

from a given DGPS measurement to this road model. In
accordance With the map-aided estimator’s formulation,
the SPS position data and error covariance information
were then transformed into a new coordinate frame such
that the road ran aong the z; -axis. The error covariance
gave a HDOP of 1.8 and the distribution made an angle
of 64.1°with the z,-axis. The MAP and NP estimators
were applied to the data, the results, when compared with
the DGPS positions, give the RMS errors expressed in
table 2. The trend expressed by the theory and confirmed
by the tic GPS results is also exhibited by the dynamic
results, albeit only a relatively small sample.

The map matching technique for differentially correct-
ing SA errors was aso implemented on the same section
of mad. Asillustratzd by figure 10, the GPS positions
measured either side of the intersection are fitted using
least squares to lines parallel to the roads being trav-
elled. The intersection of the Iwo lines of the trgectory
define the corner for the measurement sequence. The dif-
ferential comrection was then determined by comparing
the intersection on the map with that determined form
the GPS measurements. This correction was applied
to the raw SPS data prior to translation into the road
based cocrdinate frame. The results of the correction
process and subsequent map-aided positioning are given
in table 2. Again the map-aided estimator performance
reflected the theoretical results providing significant ac-
curacy improvements. Although, without the map-aided
estimators, the map matched based differentia correction
on its own provided a significant accuracy improvement.

Vehicle .

Path ‘.

'

¥

Correcticn M

Vector )
.'.............-.-p.....l."....

Figure 10: The use of standard map matching techniques
to determine a differential GPS correction.



9. FUTURE IMPROVEMENTS

The author has already identified a number of methods
for further improving the map-aided position estimators
and for strengthening the underlying positioning system
framework. \While some Of these idess are for the sole
use Of GPS based tracking, others are equaly applicable
to au absolute positioning systems.

91 Road Identification

A key component of the map-aided estimator iS correct
road identification. All of the performance figures de-
rived for the estimator are not applicable if the vehicle
has been projected onto the wrong road Therefore, opd-
mal operation of this estimator relies on a robust method
for ensuring that the correct road has been identified. As
previoudy mentioned the spatially reduced kalman filter
iscapable of providing road identification information
aswell as an improved position accuracy. The author
interds to further refine the technique for integrating the
kalman filter and the map-aided estimator. In addition,
the map-aided estimation framework will be expanded
to include map based velocity correction. This will al-
low velocity measurements to be included in the spatially
reduced kalman filter,

A problem with this kalman filter approach arises when
the measurement errors are biased either directly by er-
ror sources SUch as SA in GPS or indirectly through
map regigtration errors. It is possible that in these Situ-
aions, the hias will be sufficient to cause the measured
vehicle trgjectory to best match with the wrong road.
The effectiveness of the differentia technique previoudy
described dowly degrades as the SA changes. Lateral
errors are. easily removed by the map-aided positioning
but any change in the longitudina bias wilt remain unde-
tected. If the longitudina error grows sufficiently large,
the wrong intersection could be identified at the next nurn-
ing point which in turn compounds when the differential
correction iS determined. To avoid this problem, the SA
carrection model needs incorporate a drift rate and more
sophisticated map matching techniques (3] employed to
minimise the risk of incorrect road identification. The
kalman filter can also be improved by modifying the sys-
tem model to incorporate correlated noise and biases [18].

A further technique, specific to GPS and yet to be ex-
perimentally verified, is to utilise all visible satellites to
calculate aset of position estimates at any given epoch
by taking all possible combinations of 4 satellites. Gea-
erally a Least Squares h is used to determine the
best position estimate using al visible satellites but the
SA effects are not a Gaussian noise and as a conseguence
the Least Squares estimate may not represent the optimal
use Of the avalable information. It may be possible to
utilise the spread of measurements for agiven position
10 better determine the correct road.

92 Supplementary Information Sources

The performance of the MAP map-aided position est-
mator iS easly improved through the incorporation Of
additional information Sources such as:

Road Type: Each road type is assigned a probability
accarding to it’Sraffic flow capability - a vehicle is
more likely to be on a major road than the lane running
pardlel to the mgjor road.

Road Rules: Any rule restricting the vehicle’s freedom,
(e.g. No Right Turn, one way streets, etc) can be mod-
elled by setting appropriate probabilities to zero. Vehicle
speeds can also be used to differentate local roads (low
gpeed [imits) from expressways (high speed limits).

Route Knowledge: Direct route knowledge or route pref-
erences as determined from past journeys (17} (driver
behaviour) can be used to bias the positiona PDFs in a
manner similar to the road type above.

The incorporation Of this type of information is straight
forward as the information is often available with the
current digital map formats (e.g. GDF [4]) and it applies
uniformly to each road. That is, the positional PDF for
a given road is still uniform and as a result the local po-
sition estimate (Eq. 41) is unaffected by the additional
information. The information, incorporated by modify-
ing the positional PDF of each road, is only used when
determining the globally cptimal estimate (Eq. 45).

Other sources and forms of information are available,
the most notable being the use of maffic flow rates. For
example, a vehicle on a given road is more likely to be
found at the intersections. This knowledge, and other
knowledge of a similar form, can be represented by a
non-uniform positional PDF implying that the MAP es-
timate Will nesd to be derived from first principles. This
is not quite the case as it can be shown that a MAP esti-
mate based on a uniform PDF does not lose any relevant
position information [ 15} and consequently the estimate
can he refined if and when other information becomes
available such as that represented by anon-uniform PDF.

10. CONCLUSION

The proposed map-aided position estimation System
based on maximum & posteriori principles greatly in-
creases the accuracy of any positioning system used to
track objects with a restricted operating domain; most
particularly motor vehicles, but also trains and trams.
The position estimation process results in all measure-
ments being translated onto a map such that all of the
position estimates now lie on known curves alowing
a one-dimensiond kalman filter to further improve the
accuracy incorporating the dynamics of the vehicle be-
ing tracked. The mathematical framework Of the MAP
estimator used also readily allows further sources of in-
formation regarding the vehicle's position and possible
movements tebe optimally incorporated.

The practical implementation of the map matching
framework and associated estimator was confirmed via
experiments conducted using GPS Standard Position Ser-



vice data in static and dynamic environments. These
experiments also confirmed the estimator’s theoretical
performance. The biases introduced by Selective Avail-
ability were significantly reduced by combining the map-
aided estimator with map matching techniques to provide
8 differential correction.

The overall position estimate, including the map matched
differential correction, are determined from Straight for-
ward equations. Given access (0 a suitable digital map of
the road network, the map-matched estimatar could be
easily incorporated within a GPS receiver.
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