

PORTABLE MEDLL RECEIVER

Installation and Operation Manual

Portable MEDLL Receiver

Installation and Operation Manual

Publication Number:	ОМ-20000065	
Revision Level:	1	2002/06/21

Proprietary Notice

The software described in this document is furnished under a license agreement or non-disclosure agreement. The software may be used or copied only in accordance with the terms of the agreement. It is against the law to copy the software on any medium except as specifically allowed in the license or non-disclosure agreement.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of a duly authorized representative of NovAtel Inc.

The information contained within this manual is believed to be true and correct at the time of publication.

GPSAntenna, GPSCard, GPSolution, MEDLL®, and MET® are trademarks of NovAtel Inc.

© 2002 NovAtel Inc. All rights reserved Unpublished rights reserved under International copyright laws. Printed in Canada on recycled paper. Recyclable.

TABLE OF CONTENTS

Fo	preword	viii
	Scope	viii
	Prerequisites	viii
	Compliance with GPS Week Rollover	viii
1	Introduction	
	The NovAtel Portable MEDLL Receiver	
	Hardware Overview	2
	MEDLL	3
	GEO Processing	
	Other Outputs & Inputs	
2	Installation of Portable MEDLL Receiver	
	Minimum Configuration	
	User-Supplied Computer	
	LEDs	
	Connecting Data Communications Equipment	6
	Connecting the GPS Antenna	7
	Connecting the External Power Input	
	Accessing the Strobe Signals	
3	Operation	9
	Pre-Start Check List	9
	Serial Ports - Default Settings	9
	Boot-Up	9
	Timing: Receiver Transmit and Receive Time	10
	Initial Communications with a Portable MEDLL Receiver	
	Valid Data and Available Logs	
4	Firmware Updates	12
	Obtain Files	
	Decompress Files	
	Run LOADER	
	Command-Line Mode	
	Updating the GPSCards in the MEDLL Receiver	
	Entire Receiver Update Mode	14
5	Command Descriptions	15
	\$ALMA	
	ASSIGN	
	\$ASSIGNG2TOPRN	
	CLOCKADJUST	
	COMn	
	CONFIG	
	CSMOOTH	
	ECUTOFF	
	FIX POSITION FREQUENCY OUT	
	FREQUENCI_UUI	

	LOG	
	RESET	
	\$SETFRAMETYPE	
	UNASSIGN	
	UNASSIGNALL	
	\$UNASSIGNG2TOPRN UNDULATION	
	UNFIX	
	UNLOG	
	UNLOGALL	
	VERSION	
6	Output Logging	
7	NovAtel Format Data Logs	
	ASCII Log Structure	
	Binary Log Structure	
	Compressed Binary Log Structure	
	Time Conventions	
	Log Descriptions	
	\$AGCA/B AGC and A/D Information	
	ALMA/B Decoded Almanac	
	CDSA/B Communication and Differential Decode Status	
	CLKA/B Receiver Clock Offset Data	
	CRLA/B Correlator Location IN C/A chips	
	DOPA/B Dilution of Precision	
	ETSA/B Extended Channel Tracking Status	
	FRMA/B Framed Raw Navigation Data	
	IONA/B Decoded Almanac - Ionospheric Model Parameters	
	MPMA/B Multipath Meter	
	POSA/B Computed Position	
	RBTA/B Satellite Broadcast Data: Raw Bits	
	RCCA Receiver Configuration	
	REPA/B Raw Ephemeris	
	RGEA/B/D Channel Range Measurements	
	RVSA/B Receiver Status	
	SATA/B Satellite Specific Data	
	SBTA/B Satellite Broadcast Data: Raw Symbols	
	TM1A/B Time of 1PPS	
	UTCA/B Decoded Almanac - UTC Time Parameters	
	WBCA/B Wide Band Carrier Range Correction	
	WRCA/B Wide Band Code Range Correction	
Α	Portable MEDLL Receiver - Technical Specifications	
В	GPS Overview	
	GPS System Design	
	The Space Segment	
	The Control Segment	

	The User Segment	87
С	Information Messages	88
D	Acronyms	92
INDE	ΞΧ	94

TABLES

Portable MEDLL Command Summary	16
Portable MEDLL Logs Summary	36
GPSCard Solution Status	53
Channel Tracking Status Bits	53
Bits 0 - 3 : Channel Tracking State	54
Bits 12-14 : Correlator Spacing	54
Range Reject Codes	54
MEDLL Status Bits Table	
Reference Ellipsoid Constants	61
Transformation Parameters (Local Geodetic to WGS-84)	62
Receiver Self-Test Status Codes	69
Receiver Self-Test Status Bits	70
Additional Information About Portable MEDLL Receiver Self-Test Status Word	72
Range Record Format (RGED Only)	73
Type 1 !ERRA Messages	88
Type 1 !MSGA Messages	89
Type 2 Information Messages	90
	Portable MEDLL Logs Summary

FIGURES

1	The NovAtel Portable MEDLL Receiver	1
2	Portable MEDLL Receiver Functional Block Diagram	2
3	Portable MEDLL Minimum System Configuration	4
4	Rear Panel of Portable MEDLL Receiver	5
5	Lights on Front Panel of Portable MEDLL Receiver	6
6	Pinout for COM Ports - Portable MEDLL	6
7	Antenna Input - Portable MEDLL	7
8	External Power Connections - Portable MEDLL	7
9	Power Switch - Portable MEDLL	7
10	Strobe 9-pin D-Connector Pinout - Portable MEDLL	8
11	Timing Relationships	10
12	Height Relationships	33
13	View of GPS Satellite Orbit Arrangement	86

NOTICE

In accordance with the EMC Directive 89/336/EEC of the European Community including amendments by the CE marking Directive 93/68/EEC.

The Portable MEDLL receiver, in view of its design and type of construction, fully complies with the relevant basic radio interference requirements of the EMC Directive and qualifies to carry the **CE** Marking.

Should this instrument be modified without agreement, this declaration becomes invalid.

Relevant EMC Directive:		C Directive (89/3 endment (93/68/E	/
Applied Harmonized Standa	rd:	EN5022 CLASS	A
		CISPR 11/22 CL	ASS A
		EN50082-2: 199	4 R-02
		EN 61000-4-2:	1995
		EN 61000-4-3:	1997
		EN 61000-4-4:	1995
		EN 61000-4-6:	1996

IMPORTANT: In order to maintain compliance with the limits of EMC Directive 89/336/EEC, it is required to use properly shielded interface cables when using the Serial Ports, such as Belden #9539, or equivalent, double-shielded cables when using the Strobe Port, such as Belden #9945, or equivalent, and Belden #8770 cable for input power source (ensuring the shield is connected to the protection ground).

FOREWORD

SCOPE

The Portable MEDLL Receiver Installation and Operation Manual is written for users of the Portable MEDLL receiver.

This manual describes NovAtel's Portable MEDLL receiver in sufficient detail to allow effective integration and operation. The manual is organized into sections, which allow easy access to appropriate information. Acronyms used in this manual may be found in *Appendix D*, on *Page 92*.

PREREQUISITES

The Portable MEDLL receiver is a stand-alone fully functional GPS receiver. Refer to *Chapter 2, Installation of Portable MEDLL Receiver, on Page 4,* for more information on installation requirements and considerations. Refer to *Appendix B, on Page 86,* for an overview of GPS.

The NovAtel Portable MEDLL receiver utilizes a comprehensive user interface command structure, which requires communications through its serial (COM) ports. To utilize the built-in command structure to its fullest potential, it is recommended that some time be taken to review and become familiar with *Chapters 6-8* of this manual before operating the Portable MEDLL receiver.

Please also see the User-Supplied Computer section on Page5.

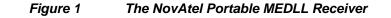
COMPLIANCE WITH GPS WEEK ROLLOVER

The GPS week rollover issue refers to the way GPS receivers store information regarding the current GPS week. According to the official GPS system specifications document (*ICD-GPS-200, paragraph 20.3.3.3.1.1*), "... 10 bits shall represent the number of the current GPS week..." This means an integer number between 0 and 1023 represents the GPS week. As GPS time started on Sunday January 6, 1980 at 0:00 hours Greenwich Mean Time (GMT), week 1023 ended on Saturday August 21, 1999 at 23:59:59 GMT.

According to the ICD-GPS specifications, the receiver should reset the GPS week number. This means that the week number should not advance to 1024, but start back at 0. However, another way to handle this issue is to extend the number of bits used to represent the GPS week number. This way, the GPS week would be able to increment per usual and would not have to be reset.

Per the GPS system specifications document, NovAtel firmware resets the receiver's GPS week number back to zero. Different manufacturers no doubt handled this situation differently. Therefore, users should be aware of this issue and keep in mind that there may be a compatibility issue when purchasing and using different makes of GPS receivers.

1 INTRODUCTION


The Portable MEDLL receiver is designed to receive, decode and output GPS signals for analysis by NovAtel's Multipath Assessment Tool (MAT). The primary functions of Portable MEDLL include:

- data collection (for example, multipath characterization data)
- determining satellite orbits
- determining satellite clock corrections
- determining satellite integrity
- independent data verification
- system operations & maintenance

THE NOVATEL PORTABLE MEDLL RECEIVER

The principal function of the Portable MEDLL receiver is to provide GPS outputs that characterize multipath environments experienced at the receiver antenna. This is particularly important for permanent installations where signal reflections are likely to result in significant multipath effects. The Portable MEDLL receiver together with MAT can be used to analyse and select permanent reference station sites.

® HE NOWATE	CARD STATUS 1
	2 🖤
	3 @
	10
	5.0
MEDLL RECEIVER	e @

The NovAtel Portable MEDLL receiver is a high-performance GPS & GEO receiver that provides accurate multipath characterization data. NovAtel has developed a multipath elimination technology that approaches the theoretical limits of multipath-free GPS signal reception. This patented technology, known as "Multipath Estimating Delay-Lock-Loop" (MEDLL), uses a combination of hardware and software techniques which together are capable of reducing the combined effects of pseudorange and carrier-phase multipath errors by as much as 90% compared to a system using a standard correlator alone. The MEDLL technology takes advantage of NovAtel's parallel channel correlator sampling techniques. MEDLL uses a proprietary coupled correlator sampling technique combined with "maximum likelihood estimation" techniques to break down the received signals into direct path and reflected path components. MEDLL determines the amplitude, delay, and phase angle of both the direct and multipath signals and analyses the signal with the least delay to determine the direct path. The Portable MEDLL firmware provides multipath amplitude, delay and phase data for subsequent analysis. To do this, MEDLL utilizes a multi-card configuration. Each L1 GPSCard in the MEDLL receiver is

linked to one common radio frequency (RF) deck and an oven controlled crystal oscillator (OCXO) that minimizes interchannel biases.

The Portable MEDLL receiver is packaged in a portable instrumentation case. The rear panel's connectors provide easy access to strobes, communication, power and an antenna.

HARDWARE OVERVIEW

The NovAtel Portable MEDLL receiver consists of a Master card and five Slave cards, see Figure 2.

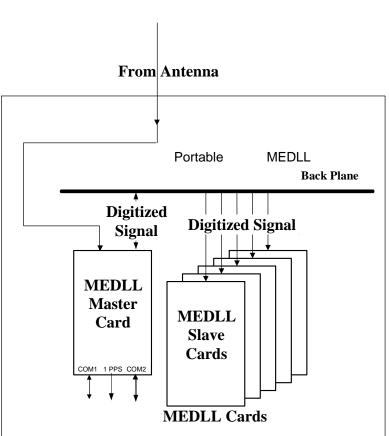


Figure 2 Portable MEDLL Receiver Functional Block Diagram

The receiver provides:

- a) $\ \ L1$ GPS and GEO data
- b) a 1PPS output
- c) COM ports for bi-directional communication with a computer

MEDLL

MEDLL is implemented across a number of standard NovAtel 12 channel GPS receivers. Through parallel linking of these separate receiver modules, MEDLL may be configured to behave as a single GPS receiver, capable of simultaneously tracking 10 GPS satellites and 2 GEO satellites, or 12 GPS satellites and no GEO satellites.

A single incoming RF signal is routed to a Master Card (Master), which down converts the signal to baseband frequency for parallel processing by five Slave Receivers (Slaves). The baseband signal is then processed by twelve parallel digital signal-processing sections, through Multiple Independent Nomadic Stargazer (MINOS) Application Specific Integrated Circuits (ASICs), and NovAtel patented MEDLL tracking technology.

Across the twelve processing sections, there are a total of 72 tracking channels. Six channels are dedicated to tracking each GPS or GEO satellite, and these channels are positioned around the associated correlation envelope. By a process of continuous comparison of the signals measured by each channel, any distortion from the ideal correlation envelope can be detected, tracked, qualified and removed. This process allows the receiver to isolate and eliminate multipath distortions from the received signal.

The Master and Slave receivers are mounted in a portable instrumentation case, and are supplied power from an integrated power conditioner. Stable clock signals are derived from a precision internal oscillator. Status indicators on the front panel provide visual confirmation of the health of each electronic sub-assembly within the case.

Signals are routed to and from the MEDLL receiver via an RF antenna input, power and digital I/O signal connector on the rear of the unit.

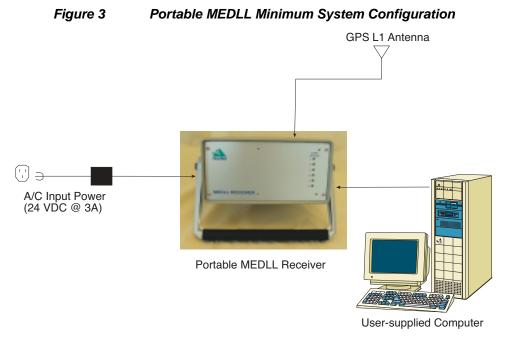
The unit is controlled via RS-232 using standard NovAtel commands, and data is output in NovAtel output logs. Specific MEDLL logs provide access to the MEDLL processing data.

GEO Processing

Specific channels in the MEDLL receiver have the capability to receive and process the GEO signals. The signal is inband at L1 and is identified with GEO-specific PRN numbers. The GEO message is decoded and separated into its various components. The GEO message and associated pseudorange is provided as an output.

Other Outputs & Inputs

- A 1 pulse per second (1PPS) strobe output from the MEDLL master. Timing information of this pulse is available in the TM1A log, see *Page 79*.
- The COM1 and COM2 ports provide: raw satellite measurements (pseudorange, carrier & time)
 - receiver status data (communications & tracking)
 - raw satellite data (ephemeris & almanac)
 - fast code corrections for signal stability monitoring
 - logs for the MAT software



2 INSTALLATION OF PORTABLE MEDLL RECEIVER

This chapter provides sufficient information to allow you to set up and prepare the Portable MEDLL receiver for standalone operation.

MINIMUM CONFIGURATION

In order for the Portable MEDLL receiver to function as a complete system, a minimum equipment configuration is required. This is illustrated in *Figure 3*.

The recommended minimum configuration and required accessories are listed below:

- NovAtel Portable MEDLL receiver
- L1 GPSAntenna and low noise amplifier (LNA)
- Power supply (22-30 VDC, 3 A maximum)
- User-supplied computer, please see the same named section on the next page
- RF cables
- User-supplied data cable

Of course, your intended set-up may differ significantly from this configuration. This section describes the basic system configuration, which you can modify to meet your specific situation.

For the configuration in *Figure 3*, setting up the Portable MEDLL receiver involves the following steps:

1. Connect your computer to the Portable MEDLL receiver ("COM1" or "COM2" connector)

Your computer must be fast enough to accept all logs requested at the configured data rates. It is recommended that the serial port be configured to the fastest compatible rate supported by both the receiver and the computer.

If data collection is planned over an expanded period, 24 hours for example, ensure the data storage capacity is adequate for the logs requested. (NovAtel recommends Microsoft Windows 2000 or later as the computer operating system). If logs are missing in the data record, then the requested logs and logging rates exceed the

receiver/computer communications capability. In this case, it is suggested that you reduce the logging rate or increase the serial communication rate.

- 2. Install the GPS antenna and low noise amplifier, and make the appropriate connections to the Portable MEDLL receiver ("ANT" connector)
- 3. Supply power in the range 22 to 30 VDC to the Portable MEDLL receiver ("+24 VDC" connector)

The connections on the rear panel are shown in Figure 4.

Figure 4 Rear Panel of Portable MEDLL Receiver

USER-SUPPLIED COMPUTER

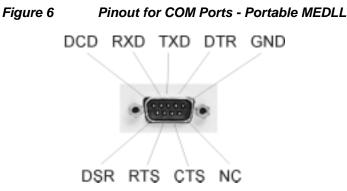
Recommended user supplied computer prerequisites:

- a. A laptop computer or workstation with Windows 2000 Professional, SR-1 or later.
- b. Hard disk with at least 400MB for free space for each 24 hours of data. Please note that this storage requirement is after subtracting any "Virtual RAM" allocated to the operating system.
- c. RAM, 128MB
- d. CPU, 300 MHz Pentium 3 or equivalent. Note that the CPU speed requirement depends on other processing requirements. This recommendation assumes the computer is used for data collection only.
- e. Archival data storage. It is recommended that any data collected with the receiver be placed on archive media such as a CD-ROM as a contingency against a disk drive failure.
- f. A high quality null modem cable for connection between the receiver and the user supplied computer. NovAtel recommends NovAtel part number 60715062 or equivalent.

LEDS

The LEDs on the front panel indicates the status of the Portable MEDLL receiver's 6 cards. They should turn from red to green to let you know the Portable MEDLL receiver's serial ports are healthy and ready to communicate, see *Figure 5* following.

Figure 5

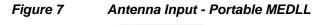

Lights on Front Panel of Portable MEDLL Receiver

CONNECTING DATA COMMUNICATIONS EQUIPMENT

There are two serial ports on the back panel of the Portable MEDLL receiver; both are configured for RS-232 protocol. These ports make it possible for external data communications equipment - such as a personal computer - to communicate with the Portable MEDLL receiver. Each of these ports has a DE9P connector.

• The COM1 and COM2 ports (see *Figure 6*) allow two-way communication. They are connected to the MEDLL master card.

CONNECTING THE GPS ANTENNA

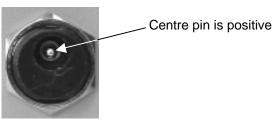

Selecting and installing an appropriate antenna system is crucial for proper operation of the Portable MEDLL receiver.

Keep the following points in mind when installing the antenna system:

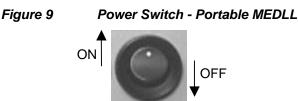
- Ideally, select an antenna location with a clear view of the sky to the horizon so that each satellite above the horizon can be tracked without obstruction.
- Ensure that the antenna is mounted on a secure, stable structure capable of withstanding relevant environmental loading forces (e.g. due to wind or ice).

Use high-quality coaxial cables (NovAtel 5m cable, part number C005, for example) to minimize signal attenuation. The gain of the LNA must be sufficient to compensate for the cabling loss. The MEDLL receiver supplies 5 A to power the LNA.

The antenna port on the Portable MEDLL receiver has a TNC female connector, as shown in Figure 7.

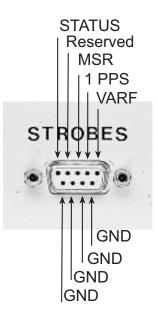


CONNECTING THE EXTERNAL POWER INPUT


The Portable MEDLL receiver provides one external regulated power supply. The input can be in the 22-30 VDC range. The receiver draws up to 3 A at start-up, but the steady-state requirement is approximately 1.5 A.

The power-input connector on the Portable MEDLL receiver connects to the Portable MEDLL receiver's internal power supply, which performs filtering and voltage regulation functions. Refer to *Figure 8*, which shows the external power connection on the Portable MEDLL receiver.

To ensure proper operation, the power switch, see *Figure 9*, must be used for applying power to the receiver. First, an external power supply must be connected to the receiver with the power switch in the OFF position (down).



ACCESSING THE STROBE SIGNALS

The Portable MEDLL receiver's output strobe lines are available on the rear panel from the DE9S connector (see *Figure 10*). The specifications and electrical characteristics of these signals are described in *Appendix A*, starting on *Page 83*. These signals are provided for diagnostic purposes.

The COM ports are connected to the MEDLL master card.

Figure 10 Strobe 9-pin D-Connector Pinout - Portable MEDLL

3 OPERATION

Before operating the Portable MEDLL receiver for the first time, ensure that you have followed the installation instructions in *Chapter 2*.

From here on, it will be assumed that testing and operation of the Portable MEDLL receiver will be performed while using a personal computer (PC); this will allow the greatest ease and versatility.

PRE-START CHECK LIST

Before turning on power to the Portable MEDLL receiver, ensure that all of the following conditions have been met:

- The antenna is properly installed and connected.
- The PC is properly connected using a null-modem cable, and its communications protocol has been set up to match that of the Portable MEDLL receiver (see the *Serial Ports* section below).

Supply power to the Portable MEDLL receiver only after all of the above checks have been made. Note that the warm-up process may take several minutes, depending on ambient temperature. Required start-up time (cold start) is 5 minutes. This is for the OCXO to stabilize.

It is recommended that you do a complete receiver reset by sending a RESET command after 5 minutes, following a cold start. This allows a recalibration of the receiver algorithm after RF components have warmed up. It also allows the automatic sky search routine to reset.

If this power-up order is not followed, the start-up times will not be achieved. The limiting factor in achieving the start-up times is the OCXO becoming stable.

SERIAL PORTS - DEFAULT SETTINGS

Because the Portable MEDLL receiver communicates with the user's PC or core computer via serial ports, both units require the same port settings. The communications settings of the PC should match these on the receiver:

- RS-232 protocol
- 9600 bits per second (bps)
- No parity
- 8 data bits
- 1 stop bit
- No handshaking
- Echo off

Once initial communications are established, the port settings for the Portable MEDLL receiver can be changed using the *COMn* command, which is described on *Page 22*.

BOOT-UP

The Portable MEDLL receiver's firmware resides in non-volatile memory. Supply power to the unit, wait a few moments for self-boot, and the Portable MEDLL receiver will be ready for command input.

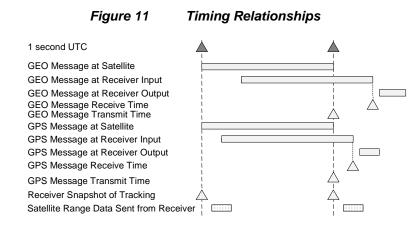
On receiver start-up, the integrity of the random-access memory (RAM) is checked. If the RAM check fails, the receiver waits for operator intervention. If the RAM check completes successfully, the authorization code is verified in order to check the integrity of the software load. If this check fails, an associated message will be output from the receiver (see *Appendix C Information Messages* starting on *Page 90*). Following the authorization code check, the configuration of the receiver is verified. The default configuration for the receiver model will be applied (see *Appendix A Portable*)

MEDLL Receiver - Technical Specifications starting on *Page 83*). After these checks have been completed, the receiver will output the COM port prompt indicating everything has started correctly and the receiver will accept commands.

A read-back check of the ASIC and a loop-back test of the COM ports are also included in the start-up test sequence to make sure that they are functioning properly. In the event of a failure of either of these checks, the associated bit will be set in the receiver status word (see *Table 12* on *Page 70*). If it has been determined that the COM port has failed, the COM prompt may not be output, depending on the nature of the failure.

There are two initial start-up indicators to let you know that the Portable MEDLL receiver's serial ports are ready to communicate:

- 1. Status lights on the Portable MEDLL receiver's front panel should turn from *red* to *green* to indicate that all cards are healthy. If any one of the LEDs does not turn *green*, then the system should be considered unreliable. If this situation occurs, the receiver requires maintenance.
- 2. Your external computer screen will display one of the following prompts:


Com1> (if you are connected to the COM1 port.)

Com2> (if you are connected to the COM2 port.)

The Portable MEDLL receiver is now ready for command input from the COM1 or COM2 port.

TIMING: RECEIVER TRANSMIT AND RECEIVE TIME

Transmit time is defined as the time when the last bit of the GPS signal leaves the satellite antenna. Receive time is when the last bit is removed from the MINOS chip. For example, the SFD log has receive time and transmit time. The transmit time is when the last bit that belongs to a 1 second accumulation leaves the satellite antenna. Receive time is the time that the last bits of the 1 second accumulation are taken from the MINOS register. *Figure 11* shows the timing relationships within the Portable MEDLL receiver.

INITIAL COMMUNICATIONS WITH A PORTABLE MEDLL RECEIVER

Communicating with the Portable MEDLL receiver is accomplished by issuing commands to a COM port from an external serial communications device.

The software on the PC could be one of the following:

- 1. Terminal Emulator (e.g. HyperTerminal)
- 2. GPSolution
- 3. Multipath Assessment Tool (MAT) is recommended

To change the default communication settings, such as bit rate, use the COMn command, see Page 22.

It is to your advantage to become thoroughly familiar with *Chapters 5* through 7 of this manual to ensure maximum utilization of the Portable MEDLL receiver's capabilities.

When the Portable MEDLL receiver is first powered up, no activity information is transmitted from the COM ports except for the **COM1>** or **COM2>** prompt described in the *Boot-up* section on *Page 9*. Receipt of the prompt confirms the boot process is complete and the receiver is ready to accept commands.

Commands are directly input to the Portable MEDLL receiver using the external computer. It should be noted that most commands do not echo a response to a command input. Your indicator that the command has actually been accepted is a return of the **COM1>** or **COM2>** prompt from the Portable MEDLL receiver. Note that *VERSION* is the only command that does provide an echo response instead of the port prompt.

Examples:

- 1. If you type VERSION <Enter> from a terminal, this will cause the Portable MEDLL receiver to echo the firmware version information.
- 2. An example of a no-echo response to an input command is the FIX POSITION command. It can be input as follows:

COM1>fix position 51.113 -114.043 1060 <Enter>

This example illustrates command input to the COM1 port, which sets the Portable MEDLL receiver's position. However, your only confirmation that the command was actually accepted is the return of the **COM1**> prompt.

If a command is erroneously input, the Portable MEDLL receiver will respond with either the "Invalid Command Option" or "Invalid Command Name" response followed by the COMn> prompt.

VALID DATA AND AVAILABLE LOGS

15 minutes after a cold start, all logs are available and the data within the logs is valid.

You can also monitor the log output for indication that the receiver output is valid. (i.e. FINETIME is set, position is valid, almanac is valid)

4 FIRMWARE UPDATES

The method of updating the firmware in the Portable MEDLL receiver is with a manual update process described following.

GPSCards store their firmware (program software) in on-board, non-volatile memory. This unique feature allows a receiver's firmware to be updated in the field. Thus, a procedure such as updating software model **EGNOSMEDLL rev. 5.4441S7** to **EGNOSMEDLL rev. 5.45** takes only a few minutes instead of the several days which would be required if the receiver had to be sent to a service depot.

The MEDLL system is updated by means of a serial connection to the host PC using a COM port.

When updating the receiver, you will need to transfer the new firmware to the appropriate GPSCard with the aid of the NovAtel-supplied utility program, "LOADER". To update firmware while using LOADER, you will need a personal computer with the following features:

- MS-DOS 6.0 or later
- one available RS-232 serial port
- null-modem cable
- at least 1 MB of available hard drive space

Below is an outline of the procedure for updating your receiver's firmware:

- 1. Obtain firmware update files from NovAtel
- 2. Decompress files
- 3. Run LOADER in one of three modes: Menu, Command Line, or Entire Receiver Update.

OBTAIN FILES

The files are available in compressed, password-protected file format. The compressed form of the files will have differing names; NovAtel will advise you as to the exact names of the files you need. As well, NovAtel will provide you with a file decompression password.

DECOMPRESS FILES

After copying the compressed files to an appropriate directory on your PC, each file must be decompressed. The syntax for decompression is as follows:

Syntax:

[filename] -s[password]

Where:

filename:	is the name of the compressed file (excluding the extension)
<i>-s</i> :	is the password command switch
password:	is the password required to allow decompression

Example:

m54441S7 -s12345678<Enter>

RUN LOADER

LOADER should be copied to the hard drive of your personal computer and run from the command (DOS) prompt. Once LOADER is installed and running, it allows you to select and configure a PC serial port, as well as choose the directory

path and file name of the new program software to be transferred to the GPSCard. After the LOADER parameters have been selected and the auth-code entered, the actual file transfer only takes a few minutes, depending on the data transfer rate selected. LOADER also contains built-in terminal software.

LOADER will instruct you when to turn on and off the Portable MEDLL receiver.

Run LOADER in one of these modes:

1.	Command-Line mode:	This allows you to set up a batch process to update the multiple cards within the MEDLL.
2.	Entire Receiver Update mode:	Use this if you wish to update all of the GPSCards in the MEDLL system within the Portable MEDLL in a single operation.

Command-Line Mode

LOADER may be used with command line options directly at the DOS command prompt. In this mode of operation the filename and authorization code can be specified on the command line. When the program detects a filename and authorization code, it immediately proceeds to read the specified file, authorize it and send it to the Portable MEDLL receiver. The syntax is in the section that follows.

Updating the GPSCards in the MEDLL Receiver

A batch file can be used to provide a convenient way to program multiple GPSCards with the same or different versions of software. Rather than having to run LOADER once for each card, you can specify the card number, firmware filename and an optional authorization code in a batch file.

The batch file is a simple ASCII text file and should be formatted as shown in the example below. In this example, Card #1 is to be loaded with software in the M544.BIN file, and remaining cards with the S544.BIN file. Cards #2-#8 have no authorization codes. The batch file should be in the same directory as the LOADER program.

Syntax #2:

LOADER -b<batchfile>

-b
batchfile> Specifies file with multiple load commands.
-h Requests on-line help.

Examples:

loader -h loader -bmedll.txt

In the second example, this would be the listing of the MEDLL.TXT file for a MEDLL receiver consisting of one master card and five slave cards:

```
1 m54441S7.bin 1234,5678,9012,3456,EGNOSMEDLL
2 s54441S7.bin
3 s54441S7.bin
4 s54441S7.bin
5 s54441S7.bin
6 s54441S7.bin
6 s54441S7.bin
```

The LOADER program will only initialise the number of cards required to complete the programming. Once the cards have been initialised, the screen will show this:

Programming card: 1 with M54441S7.BIN

As the card is being programmed, a character to the right of the filename will spin indicating programming activity. When the first card has been programmed, the screen will show this:

Programming card: 1 with M54441S7.BIN Okay Erasing card: 2 \

This process will continue until all of the requested cards are programmed and the screen will look similar to this:

```
Programming card: 1 with M54441S7.BIN Okay
Programming card: 2 with S54441S7.BIN Okay
.
.
Programming card: 6 with S54441S7.BIN Okay
Done. Resetting Cards
Initialisation took: 27 seconds
Programming took: 114 seconds
Total Time: 141 seconds
Press ENTER to exit
```

Once all of the cards have been programmed, they will be reset. Using PC communication software, or the terminal emulator in the Menu mode of LOADER, issue the *VERSION* command to verify your new program version number.

Warning! Master and slave sections need the same software version or the receiver will fail at start-up.

Entire Receiver Update Mode

If you wish to perform an update of all the GPSCards in a Portable MEDLL receiver, this mode of LOADER will guide you through the process and simplify the operation considerably. Together with the LOADER program and the update files that you received from NovAtel, there will also be a file with a name such as UPDATE.BAT. This is a batch file which runs LOADER in Command Line mode as described above, with all the commands already prepared.

To run the software, you will need to issue the following command: -

Syntax #3:

UPDATE <serial port=""></serial>	<pre><data rate="" transfer=""></data></pre>
----------------------------------	--

<serial port=""></serial>	Specifies which serial port (COM port) on your computer is to be used
<data rate="" transfer=""></data>	Specifies the data transfer rate that is to be used

Examples:

update 2 115200

This example instructs the UPDATE utility to upgrade the GPSCard, which is connected to the PC's serial port 2 (COM2) at 115,200 bits per second. The utility will prompt you to turn the power to the Portable MEDLL receiver on or off; it will also prompt you to connect your personal computer to a COM port on the Portable MEDLL receiver.

By the time this utility completes its task, you will have connected your computer to a COM port on the Portable MEDLL receiver and updated all the GPSCards inside.

5 COMMAND DESCRIPTIONS

This chapter describes the commands accepted by the Portable MEDLL receiver. They are listed in alphabetical order.

The Portable MEDLL receiver is capable of responding to many different input commands. You will find that once you become familiar with these commands, the Portable MEDLL receiver offers a wide range in operational flexibility. Commands can be sent to the Portable MEDLL receiver through the COM1 or COM2 serial port.

You can issue these commands to control the following:

- 1. Overall status of the Portable MEDLL receiver
- 2. Input & output functions
- 3. Configuration of a specific channel of the Portable MEDLL receiver

Table 1 shows the list of commands arranged alphabetically.

When the Portable MEDLL receiver is first powered up, all commands revert to the factory default settings. Each command description in this chapter also lists its default setting.

The following rules apply when communicating with the card:

- 1. The commands are not case sensitive.
- e.g. VERSION or version
- e.g. FIX POSITION or fix position
- 2. All commands and required entries can be separated by a space or a comma.
- e.g. *fix,position,51.3455323,-117.289534,1002*
- e.g. fix position 51.3455323 -117.289534 1002
- e.g. *com1,9600,n,8,1,n,off*
- e.g. *com1 9600 n 8 1 n off*
- e.g. *log,com1,frmb,onnew*
- e.g. log com1 frmb onnew
- 3. At the end of a command or command string, press <Enter>.
- 4. Successful entry of a command is verified by receipt of the COM port prompt (i.e. COM1>). Exceptions to this statement are the VERSION, RESET and CONFIG commands where the latter two commands restart the computer. Commands entered in error will return either an "INVALID COMMAND OPTION" or "INVALID COMMAND NAME" string.

Command	Description	Syntax
\$ALMA	Almanac decoder	\$alma prn,ecc,seconds,week,w,ra,w,Mo,aro,ar1,
		corr-mean-motion,A,incl-angle,health-4,
		health-5,health-alm
ASSIGN	Assign a PRN to a channel #	assign channel,prn,[doppler], [search window]
\$ASSIGNG2TOPRN	Assign a G2 delay to a PRN	\$assigng2toprn prn g2_delay
CLOCKADJUST	Adjust 1PPS continuously	clockadjust switch
COM1	Initialize Serial Port 1	com1 baud, parity, databits, stopbits, handshake, echo, [fifo]
CONFIG	Implements pre-defined configurations	• • • • • • • • • • • • • • • • • • •
CSMOOTH	Sets code smoothing	csmooth value,[value2]
ECUTOFF	Set elevation cutoff angle (degrees)	ecutoff angle
FIX POSITION	Set antenna coordinates for monitor station	fix position lat,lon,height,[station id],[health]
FREQUENCY_OUT		
LOG	Choose data logging type	log [port],datatype,[trigger],[period],[offset],[hold]
RESET	Performs a CPU reset	reset
\$SETFRAMETYPE	Sets the type of navigation frame data output in the FRMA/B log	\$setframetype type
UNASSIGN	Un-assign a channel	unassign channel
UNASSIGNALL	Un-assign all channels	unassignall
\$UNASSIGNG2TOPRN	Un-assign a G2 delay	\$unassigng2toprn prn
UNDULATION	Choose undulation	undulation separation
UNFIX	Remove all receiver FIX constraints	unfix
UNLOG	Cease logging a data log	unlog [port],data type
UNLOGALL	Cease logging all data logs	unlogall
VERSION	Current software level	version

Table 1	Portable MEDLL Command Summary
---------	--------------------------------

The syntax tables contain the start-up defaults for each command. If a command has optional parameters, the syntax table for that command will also have a default parameters column.

\$ALMA

Enter almanac parameters for sub-frames four and five. Enter parameters for each SV almanac required.

•

ר ר

When the \$ALMA log is input to the receiver, it should be input in exactly the same format as it was originally logged from the receiver. Therefore, there should be no concerns about the required accuracy of the input parameters.

ר ר

For more information on Almanac data, refer to the GPS SPS Signal Specification.

Syntax:

\$ALMA	prn	ecc	secon	ds	week	w	ra	w	M_0	a_{f0}	$a_{_{f1}}$	CO	rr-mean-motion
	A	incl	-angle	9	healt	h-4	hea	lth-5	h	leal	th-a	lm	
Syntax	Ra	ange V	/alue		De	scrip	tion						Start-Up Default
\$ALMA	N/A			Com	imand							N/A	
prn	(The \$	ALMA co	ommand	Sate	llite PRN n	umber	for mes	sage				(Wh	en Portable MEDLL receivers
ecc		erated di		Ecce	entricity								t up, there is no almanac
seconds			log and	Alma	anac refere	nce tin	ne, seco	nds into	the v	veek		ava	ilable.)
week		re the co	ore Id never	Alma	anac refere	nce we	ek (GP	S week i	numb	er)			
Ŵ			e or verify	Rate	e of right as	censio	n, radia	ns/secor	nd				
ra		nanac da		Righ	t ascensio	n, radia	ins						
w			,	Argu	iment of pe	rigee,	radians						
M _O				Mea	n anomaly,	radiar	IS						
afo				Cloc	k aging pa	ramete	r, secor	ıds					
af1				Cloc	k aging pa	ramete	r, secor	ids/seco	nd				
cor-mean- motion				Corr	ected mea	n motic	on, radia	ns/seco	nd				
А				Sem	i-major axi	s, metr	es						
incl-angle				Angl	e of inclina	tion, ra	dians						
health-4				Anti-	spoofing a	nd SV	config (sub-fram	ie 4, j	page 2	5)		
health-5				SVh	nealth, 6 bit	s/SV (sub-fran	ne 4 or 5	, pag	e 25)			
health-alm				SVh	nealth, 8 bit	s (alma	anac)						

Example:

\$alma 17,1.23692E-002,503808,67,-8.0346E-009,-1.4494328E+000,3.06213275E+000, -1.4963308E+000,-2.8706E-004,-3.6380E-012,1.45856126E-004,2.65600872E+007, 9.83002E-001,1,0,0

ASSIGN

At start-up, the Portable MEDLL receiver automatically searches for GPS satellites (PRN 1-32). However, the PRN for GEO satellites must be manually assigned to a receiver channel using the ASSIGN command.

This command may be used to aid in the initial acquisition of a satellite by allowing you to override the automatic satellite/channel assignment and reacquisition processes with manual instructions. The command specifies that the indicated tracking channel searches for a specified satellite at a specified Doppler frequency within a specified Doppler window. The instruction will remain in effect for the specified channel and PRN, even if the assigned satellite subsequently sets. If the satellite Doppler offset of the assigned channel exceeds that specified by the 'search-window' parameter of the ASSIGN command, the satellite may never be acquired or re-acquired. To cancel the effects of ASSIGN, you must issue the UNASSIGN or UNASSIGNALL command, or reboot the Portable MEDLL receiver.

When using this command, NovAtel recommends that you monitor the *channel tracking status* of the assigned channel and then use the UNASSIGN or UNASSIGNALL commands to cancel the command once the L1 channel has reached channel tracking state 4, the Steady State Tracking state. Refer to *Table 4, on Page 53,* for an explanation of the various channel states. See also the \$ASSIGNG2TOPRN command on *Page 20.* However, this is not recommended for GEO satellites. GEO satellites should be assigned without specifying a Doppler value or a Doppler search-window.

NOTES: Assigning a PRN to a channel does not remove the PRN from the search space of the automatic searcher; only the channel is removed.

By default, the automatic searcher only searches for the GPS satellites (PRNs 1-32).

There are two syntactical forms of this command, as shown following.

~		
Svntax	#1	٠
бушал	$\pi 1$	٠

A	SSIGN chan	nel prn [Doppler] [S	Search-window]	
Syntax	Range Value	Description	Start-Up Default	Parameter Default
ASSIGN	-	Command	UNASSIGNALL ¹	
Channel	0 - highest channel number	Desired channel number from 0 to r channel number inclusive	maximum	
Prn	1 - 999	A satellite PRN integer number from inclusive (for GPS), 120 to 138 inclu GEO), or 1 to 999 inclusive if P assigned using the \$ASSIGNG command.	usive (for RNs are	
[Doppler]	-100,000 to 100,000 Hz	Current Doppler offset of the satellite Note: Satellite motion, receiver motion and receiver clock frequency e be included in the calculation for frequency.		-100000 < Doppler < 100000
Search-window	0 - 10,000	Error or uncertainty in the Doppler above in Hz Note: Any positive value from 0 to 1 be accepted. Example: 500 implies ± 50	10000 will	10000

Example 1:

assign 0,29,0,2000

In Example 1, the first channel will try to acquire satellite PRN 29 in a range from -2000 Hz to 2000 Hz until the satellite signal has been detected.

Syntax #2:

ASSIGN Channel keyword

Syntax	Range Value	Description	Start-Up Default
ASSIGN	-	Command	UNASSIGNALL 1
Channel	0 - highest channel number	Desired channel number from 0 to maximum channel number inclusive	
Keyword	IDLE	Idles channel (not case sensitive)	

Example 2:

assign 11,idle

In Example 2, Channel 11 will be idled and will not attempt to search for satellites.

¹ This is issued automatically at start-up.

\$ASSIGNG2TOPRN

This command allows you to link a satellite PRN with a particular G2 delay. This delay is then added to a user-defined table, which allows up to 100 entries. Hence, when an ASSIGN command is issued, the receiver will check the user-defined table first and if the PRN is listed there, it will use that G2 delay. Otherwise it will use the default values for GPS and GEO satellites. This command affects the C/A code tracking only.

Use the \$UNASSIGNG2TOPRN command to delete a G2 delay assignment for a particular PRN from the user-defined table.

Syntax:

G2 delay \$ASSIGNG2TOPRN prn Syntax Range Value Description Start-Up Default \$ASSIGNG2TOPRN Command Prn 1 – 999 **PRN Number** (see footnote) ² (see footnote) ² G2 delay 0 - 1023 C/A code G2 delay

Example:

\$assigng2toprn 32 862

2

Defaults are as defined in the GPS Interface Control Document (ICD) and the WAAS Minimum Operational Performance Standards (MOPS).

CLOCKADJUST

All oscillators have some inherent drift characterization. This command, if enabled, permits software to model these long-term drift characteristics of the clock. The correction is applied to the 1PPS strobe as well. The clock adjustment is performed digitally. As a result, the 1PPS Strobe (on an L1 card) will have a 49 ns jitter on it due to the receiver's attempts to keep it as close as possible to GPS time.

CLOCKADJUST must be disabled if you wish to measure the drift rate of the oscillator using the CLKA/B data log.

- NOTES: 1. Do not disable this command after 30 seconds from power-up: unpredictable clock drifts may result.
 2. When disabled, the range measurement bias errors will continue to accumulate with clock drift and the 1PPS output from the receiver will drift with the internal clock.
 3. This feature should only be changed by advanced users.
 - 3. This feature should only be changed by advanced users.

Syntax:

CLOCKADJUST switch

Syntax	Range Value	Description	Start-Up Default
CLOCKADJUST	-	Command	
switch	Enable or disable	Allows or disallows adjustment to the internal clock	ENABLE
Example:			

clockadjust disable

COMn

This command permits you to configure the COM port's asynchronous drivers.

The COM1 and COM2 ports allow two-way communications. Thus you may enter COM1 or COM2 as the command name.

Syntax:

COM1 bps parity databits stopbits handshake echo [FIF0]

Syntax	Range Value	Description	Start-Up Default	Parameter Default
COMn	n = 1 or 2	COM1 or COM2	com1	
bps	300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600 or 115200	Specify bit rate	9600	
parity	N (none), O (odd) or E (even)	Specify parity	Ν	
databits	7 or 8	Specify number of data bits	8	
stopbits	1 or 2	Specify number of stop bits	1	
handshake	N (none), XON (Xon/Xoff) or CTS (CTS/RTS)	Specify handshaking	Ν	
echo	ON or OFF	Specify echo	OFF	
FIFO	ON or OFF	Enable or disable the 16550 UART's transmit FIFO	ON	(see footnote) ³

Examples:

coml 19200,e,7,1,n,on, off
com2 1200,e,8,1,n,on, off

³ The default is set to whatever value was last used.

CONFIG

This command switches the channel configuration of the COMn code receiver between pre-defined configurations. When the command is issued the receiver resets with the new configuration.

Syntax:

CONTRAC	[]]
CONFIG	[keyword]

Syntax	Range Value	Description	Start-Up Default	Parameter Default
CONFIG	-	Command		
keyword	G10W2	Configures the COMn code portion of the MEDLL receiver to track up to 10 GPS satellites & 2 GEO satellites.	G10W2	(see footnote) ⁴
	G12W0	Configures the COMn code portion of the MEDLL receiver to track up to 12 GPS satellites.		

Example:

config g10w2

⁴ The default is set to whatever value was last used.

CSMOOTH

This is the code smoothing command for the DLL filter bandwidth. The 'value' field sets the L1 channel. This value is the reciprocal of the noise equivalent bandwidth of the DLL filter. Upon issuing the command, the locktime for all tracking satellites is reset to zero, and each pseudorange smoothing filter is restarted. You must wait for at least the length of the smoothing time for the new smoothing constant to take full effect. 20 seconds is the default smoothing constant used in the Portable MEDLL receiver.

NOTES: The CSMOOTH command should only be used by advanced users. It may not be suitable for every GPS application. When using CSMOOTH in a differential mode, the same setting should be used at both the monitor and remote station.

The lower the smoothing constant, the noisier the measurement will be.

Syntax:

CSMOOTH value

Syntax	Range Value	Description	Start-Up Default	Parameter Default
CSMOOTH	-	Command		
Value	10 to 1000	L1 code smoothing constant (in seconds).	20	
Example:				

csmooth 20

ECUTOFF

This command sets the elevation cut-off angle for usable satellites. The receiver will not start tracking a satellite until it rises above the cut-off angle. If a satellite being tracked drops below this angle, it will no longer be tracked.

This command permits a negative cut-off angle, which could be used in these situations:

- the receiver is at a high altitude, and thus can look below the local horizon
- satellites are visible below the horizon due to atmospheric refraction

NOTES: 1. When ECUTOFF is set to zero (0), the receiver will track all satellites in view including some within a few degrees below the horizon.

- 2. Care should be taken when using ECUTOFF because the signals received from low-elevation satellites travel along a longer atmospheric path and thus tend to experience greater degradation.
- 3. If a satellite has been assigned to a specific channel (via the ASSIGN command), the receiver will continually attempt to track the satellite regardless of the elevation.

Syntax:

ECUTOFF angle

Syntax	Range Value	Description	Start-Up Default
ECUTOFF	-	Command	
Angle	-90° to +90°	Angle value in degrees (relative to the horizon).	+5

Example:

ecutoff 5

FIX POSITION

Invoking this command will result in the Portable MEDLL receiver position being held fixed. A computation will be done to solve local clock offset, pseudorange, and pseudorange differential corrections. This mode of operation can be used for time transfer applications where the position is fixed and accurate GPS time output is required (refer to the CLKA/B log on *Page 45* and the TM1A/B log on *Page 79* for time data).

The values entered into the FIX POSITION command should reflect the precise position of the antenna's phase centre. Any errors in these coordinates will be propagated into the pseudorange corrections calculated by the receiver.

The height is the distance above the geoid. The Portable MEDLL receiver performs all internal computations based on WGS-84. If you are going to input an ellipsoidal height you must first set the undulation to zero; please refer to the UNDULATION command on *Page 33*.

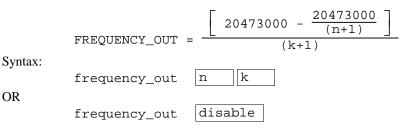
The FIX POSITION command will override any previous FIX POSITION command settings. Use the UNFIX command to disable the FIX POSITION setting.

Syntax:

	FIX POSITION lat	lon height [Station	id] [RTCM	stn health]
Syntax	Range Value	Description	Start-Up Default	Parameter Default
FIX POSITION	J -	Command	UNFIX	
lat	± 90 (only 8 decimal places are shown the RCCA log, though higher precision is carried internally)	Latitude (in degrees/decimal degrees) of fixed monitor station antenna in current datum. A negative sign implies South latitude.		
lon	± 360 (only 8 decimal places are shown the RCCA log, though higher precision is carried internally)	Longitude (in decimal degrees) of fixed monitor station antenna in current datum. A negative sign implies West longitude.		
height	-1,000 to 20,000,000	Height (in metres) above the geoid of the monitor station in current datum.		
station id	Reserved			
Reference Station Health				

Example:

fix position 51.3455323,-114.289534,1201.123


The above example fixes the position of the receiver with fixed coordinates of:

Latitude	N 51° 20' 43.9163" (WGS-84 or local datum)
Longitude	W 114° 17' 22.3224"
Height above sea level	1201.123 metres

FREQUENCY_OUT

This command allows you to specify the frequency of the output pulse at the VARF pin of the I/O strobe connector. The frequency in Hz is calculated according to the formula below. The time between pulses may have up to 49 ns jitter variation from the true frequency pulse.

Syntax	Range Value	Description	Default	Example
FREQUENCY_OUT	-	Command	disable	frequency_out
n	1 to 65535	Variable integer		1
k	1 to 65535	Variable integer		65535

Example 1:

OR

frequency_out 1,65535

n=1, k=65535 results in an output pulse frequency of 156.196594 Hz

Example 2:

frequency_out 65535,1

n=65535, k=1 results in an output pulse frequency of 10,236,343.8034 Hz

As a reference, some n and k selections and their corresponding frequency outputs are listed in the following table:

n	k	Frequency_Out (Hz)	
1	65535	156.1966	(Minimum)
65535	65535	312.3884	
20472	20471	1 000.0000	
1569	2045	9 999.9804	
346	345	59 000.0000	
74	201	100 000.1320	
58	57	347 000.0000	
1	9	1 023 650.0000	
1	1	5 118 250.0000	
65535	1	10 236 343.8034	(Maximum)

If the 49 ns jitter is not suitable for your application, the following formula may be used to eliminate the jitter.

$$FREQUENCY_OUT = \frac{20473000}{(k+1)}$$

N is constrained to 0, and K = 1 to 65535 where:

NOTE: Frequency resolution of this method is not as fine as the original formula but provides jitter-free pulses.

LOG

Many different types of data can be logged using several different methods of triggering the log events. Every log element should be directed to a COM port. The ONTIME trigger option requires the addition of the *period* parameter and optionally allows input of the *offset* parameter. See the beginning of *Chapter 7* for further information about the ASCII and binary data log structures.

The '*port*' parameter is optional. If '*port*' is not specified, '*port*' is defaulted to the port that the command was received on. This feature eliminates the need for you to know which port you are communicating on if you want logs to come back to you on the same port by which you are sending commands.

If the LOG syntax does not include a 'trigger' type, it will be output only once following execution of the LOG command. If 'trigger' type is specified in the LOG syntax, the log will continue to be output based on the 'trigger' specification.

The optional parameter '*hold*' will prevent a log from being removed when the UNLOGALL command is issued. To remove a log which was invoked using the '*hold*' parameter requires the specific use of the UNLOG command.

The COM1 and COM2 ports allow two-way communications. Thus, you would enter COM1 as the port name.

Specific logs can be disabled using the UNLOG command, whereas all enabled logs will be disabled by using the UNLOGALL command (except for those issued with the '*hold*' parameter).

When the LOG command is ONTIME the software will attempt to output the log with the period chosen. The start of the period is the 1PPS signal. For Portable MEDLL the period will be 1 second, therefore, ONTIME 1 will cause logs to be output as soon as the data is available after the 1PPS. The OFFSET option is used to output the log with the period starting, not from the 1PPS but, at 1PPS plus the offset. The OFFSET option value is limited by the measurement frequency. That is, the software will only output a log after a measurement is taken. MEDLL's measurement frequency is 5 Hz. MEDLL's measurement log can be output at 1PPS plus the offset where the offset is one of 0.2, 0.4, 0.6 and 0.8 seconds. If you ask for 1PPS + 0.5 seconds, you will get data at 1PPS + 0.6 seconds. This measurement data is from the 1PPS + 0.6 measurement and not from the time of the 1PPS.

Examples:

```
log com1,etsb,ontime,60,1
log com1 etsb
log etsb ontime 60 1
```

The first example will cause the ETSB log to be sent to COM port 1, recurring every 60 seconds, and offset by 1 second. The second example will cause the ETSB log to be sent only once, by omitting the trigger option. The third example is identical to the first, since the only port on the Portable MEDLL receiver to which one can issue commands is configured as COM1.

Syntax:				
	LOG [po	rt] datatype [trigger] [period]		
Syntax	Range Value	Description	Start-Up Default	Parameter Default
LOG			UNLOGALL	
port		(Optional) COM1 is the only valid entry		COM1
datatype		Enter one of the valid data log names (see Chapter 7)		
trigger		ONCE		ONCE
		Immediately logs the selected data to the selected port once. Default if trigger field is left blank.		
		ONMARK		
		Logs the selected data when a MARKIN electrical event is detected. Outputs internal buffers at time of mark – does not extrapolate to mark time.		
		ONNEW Logs the selected data each time the data is new even if the data is unchanged.		
		ONCHANGED		
		Logs the selected data only when the data has changed.		
		ONTIME[period], [offset] Immediately logs the selected data and then periodically logs the selected data at a frequency determined by the <i>period</i> and <i>offset</i> parameters. The logging will continue until an UNLOG command pertaining to the selected data item is received (<i>see UNLOG</i> <i>Command, on Page 34</i>).		
		CONTINUOUSLY		
		Will log the data all the time. The GPSCard will generate a new log when the output buffer associated with the chosen port becomes		
		empty. This may cause unpredictable results if more than one log is assigned to the port.		
		The <i>continuously</i> option was designed for use with differential corrections over low bit rate data links. This will provide optimal record generation rates. The next record will not be generated until the last byte of the previous record is loaded into the output buffer		
Period	1-3600	of the UART. (Optional) Use only with the <i>Ontime</i> trigger. Units for this		
renou	1-3000	parameter are seconds. The selected period may be any value from 1 second to 3600 seconds. Selected data is logged immediately and then periodic logging of the data will start at the next even		
		multiple of the period. If the period is 15 seconds, then the logger will log the data when the receiver time is at even 1/4 minute marks. The same rule applies even if the chosen period is not divisible into		
		its next second or minute marks. If a period of 7 seconds is chosen, then the logger will log at the multiples of 7 seconds less than 60, that is, 7, 14, 21, 28, 35, 42, 49, 56 and every 7 seconds thereafter.		
Offset	0 to (period – 1)	(Optional) Use only with the Ontime trigger and with Period. Units for this parameter are seconds. It provides the ability to offset the logging events from the above start-up rule. If you wished to log data at 1 second after every minute you would set the period to 60 seconds and the offset to 1 second. The default is 0.		
Hold		(Optional) Prevents a log from being removed when the UNLOGALL command is issued; UNLOG must be used.		

RESET

This command performs a CPU reset. Following a RESET command, the Portable MEDLL receiver will initiate a coldstart boot up. Therefore, the receiver configuration will revert to the factory default.

The RESET command does not reset the clock card.

Syntax:

RESET

\$SETFRAMETYPE

This command controls the type of navigation frame data that is output in the FRMA/B logs.

Syntax:

\$SETFRAMETYPE type

Syntax	Range Value	Description	Start-Up Default
\$SETFRAMETYPE	-	Command	
Туре	ALL	Individual navigation frame data can be	ALL
	GPS	entered or the 'all' keyword can be used if the	
	GEO	all types are needed.	

Example:

\$setframetype gps

UNASSIGN

This command cancels a previously issued ASSIGN command and the channel reverts to automatic control. If an L1 channel has reached channel tracking state 4 (L1 steady state tracking, see *Table 4, Page 53*), the satellite being tracked will not be dropped when the UNASSIGN command is issued unless it is below the elevation cut-off angle and there are healthy satellites above the elevation cut-off angle that are not already assigned to other channels.

Syntax:

UNASSIGN channel

Syntax	Range Value	Description	Start-Up Default
UNASSIGN	-	Command	N/A
Channel	0 - highest channel number	Reset channel to automatic search and acquisition mode	
Example:			
1	inaccian 11		

unassign 11

UNASSIGNALL

This command cancels <u>all</u> previously issued ASSIGN commands for all channels. Tracking and control for each channel reverts to automatic mode. If any of the L1 channels has reached channel tracking state 4 (L1 steady state tracking, see *Table 4, Page 53*), the satellites being tracked will not be dropped when the UNASSIGNALL command is issued unless they are below the elevation cut-off angle and there are healthy satellites above the elevation cut-off angle that are not already assigned to other channels.

Syntax:

UNASSIGNALL

\$UNASSIGNG2TOPRN

This command deletes a G2 delay assignment for a particular PRN from the user-defined table. It reverses a previous \$ASSIGNG2TOPRN command. There are two syntactical forms, as shown below.

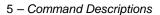
Syntax #1:

\$UNASSIGNG2TOPRN prn

Syntax	Range Value	Description	Start-Up Default
\$UNASSIGNG2TOPRN	-	Command	N/A
Prn	1 – 999	PRN Number	
F 1			

Example:

\$unassigng2toprn 101


Syntax #2:

\$UNASSIGNG2TOPRN Keyword

Syntax	Range Value	Description	Start-Up Default
\$UNASSIGNG2TOPRN	-	Command	N/A
Keyword	ALL	Keyword - 'all' is the only defined keyword at this time.	

Example:

\$unassigng2toprn all

UNDULATION

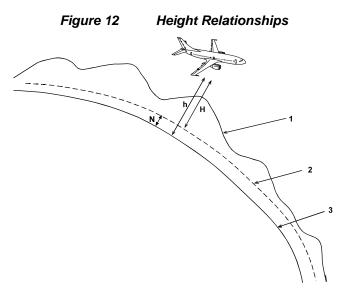

This command permits you to either enter a specific geoidal undulation value or use the internal table of geoidal undulations. The separation values only refer to the separation between the WGS-84 ellipsoid and the geoid at your location, regardless of the datum chosen. When you are going to input the ellipsoidal height using the FIX POSITION command you must first set the UNDULATION to zero.

Figure 12 illustrates the various terms used in describing height relationships. In this figure:

1 = topography	N = undulation
2 = geoid = mean sea level	h = ellipsoidal height

3 = ellipsoid

h = ellipsoidal height = height above ellipsoid H = height above mean sea level.

Syntax:

UNDULATION Separation

Syntax	Range Value	Description	Start-Up Default
UNDULATION	-	Command	
Separation	Keyword "table" or a value	Selects the internal table of undulations and ignores any previously entered value. The internal table utilizes a grid (OSU - 89B) of approximately 1.5 degrees x 1.5 degrees. A numeric entry that overrides the internal table, with a value in metres.	TABLE

Examples:

undulation table undulation -5.6

UNFIX

This command removes all position constraints invoked with the FIX POSITION command.

Syntax:

UNFIX

UNLOG

This command permits you to remove a specific log request from the system. It reverses the effect of a particular LOG command.

The [port] parameter is optional. If [port] is not specified, it is defaulted to the port that the command was received on. This feature eliminates the need for you to know which port you are communicating on if you want logs to come back on the same port you are sending commands on.

Syntax:

UNLOG [port] datatype

Syntax	Range Value	Description	Start-Up Default
UNLOG	-	Command	N/A
Port	COM1	COM1 port from which log originated	
datatype	any valid log	The name of the log to be disabled	

Example:

unlog com1,tm1b

UNLOGALL

This command permits you to disable all current logs on the port to which your data communication equipment is connected. It reverses the effects of all LOG commands.

NOTE: This command does not disable logs that have the 'hold' attribute (see the description for the LOG command on *Page 28*). To disable logs with the 'hold' attribute, use the UNLOG command.

Syntax:

UNLOGALL

VERSION

Use this command to determine the current software version of the GPSCard. The response to the VERSION command is logged to the port from which the command originated.

Syntax:

VERSION [all]

Response:

noe.												
	card	type	model#	S/N	MACH	rev	SW	rev/boot	code	rev	date	

Command	Description
VERSION	Software version of the master card
all	Software version of the master card and the five slave cards

Response	Description	Maximum Field Length (bytes)
card type	Card type	5
model #	Model number	16
S/N	Serial number	16
HW	Characters representing hardware (HW)	2
MACH rev	Hardware revision	16
SW	Characters representing software (SW)	2
SW rev/boot code rev	Firmware revision/ boot code revision	16
date	Firmware compile date	12

Example:

```
COM1>version all
Card[1] OEM-2 EGNOSMEDLL SGC00140018 HW 1 SW 5.4441S7/1.03 Sep 25/01
Card[2] OEM-2 SGD01150132 HW 1 SW 5.4441S7/1.03 Sep 25/01
Card[3] OEM-2 SGD01150106 HW 1 SW 5.4441S7/1.03 Sep 25/01
Card[4] OEM-2 SGD01150105 HW 1 SW 5.4441S7/1.03 Sep 25/01
Card[5] OEM-2 SGD01150119 HW 1 SW 5.4441S7/1.03 Sep 25/01
Card[6] OEM-2 SGD01150118 HW 1 SW 5.4441S7/1.03 Sep 25/01
```

NOTE: Spaces are delimiters in between fields.

6 OUTPUT LOGGING

When outputting data from the Portable MEDLL receiver, the logs must be sent to the COM1 or COM2 serial port. *Table 2* shows the list of logs, arranged alphabetically.

- >>>>		Monopoo				-
000		ID	Max	Min	Ave.	Std. Dev.
\$AGCA/B	AGC and A/D 6 information	74	126	88	108	
ALMA/B	Decoded almanac 5, 9	18	46	59	65	3
CDSA/B	Communication and ⁵ differential decode status	39		_	N/A	
CLKA/B	Receiver clock offset 6 data	02	181	116	147	15
CRLA/B	Correlator location in ⁵ C/A chips	96	173	75	138	11
DOPA/B	Dilution of precision 5, 8	07		_	N/A	
ETSA/B	Extended channel 5, 7 tracking status	48			N/A	
FRMA/B	Framed raw navigation ⁶ data	54	492	443	466	10
IONA/B	Decoded almanac-ionos- pheric model params. ^{5, 9}	16		_	N/A	
MPMA/B	Multipath meter ⁵	95	200	112	170	8
POSA/B	Computed position 5, 8	01		_	N/A	
RBTA/B	Satellite broadcast data:5 raw bits	52		_	N/A	
RCCA	Receiver configuration ⁵	N/A		_	N/A	
REPA/B	Raw ephemeris 5, 7	14			N/A	
RGEA/B/D	Channel range ⁵ measurements	B: 32 D: 65	61	33	53	3
RVSA/B	Receiver status ⁶	56	118	81	100	8
SATA/B	Satellite Specific data 6	12	174	110	141	15
SBTA/B	Satellite broadcast data:5 raw symbols	53		_	N/A	
TM1A/B	Time of 1PPS 6	03	178	145	159	5
UTCA/B	Decoded almanac-UTC time parameters 5, 9	17	N/A			
WBCA/B	Wide band carrier ⁵ range correction	97		_	N/A	
WRCA/B	Wide band code range ⁵ correction (inc. L1 & L2)	67	58	33	53	ы

 Table 2
 Portable MEDLL Logs Summary

The data logs available are in NovAtel ASCII and binary format, and are described in *Chapter 7*. They can be logged using several methods of triggering each log event. Each log is initiated using the LOG command. The LOG command and syntax are described in *Chapter 5*; they are of the form *log* [port],datatype,trigger,[period],[offset],[hold].

If the LOG syntax does not include a *trigger* type, it will be output only once following execution of the LOG command. If *trigger* type is specified in the LOG syntax, the log will continue to be output based on the *trigger* specification. Specific logs can be disabled using the UNLOG command, whereas all enabled logs will be disabled by using the UNLOGALL command unless a log has the hold attribute (see the UNLOG and UNLOGALL commands on *Page 34*).

The measurement rate on MEDLL is 5 Hz.

⁵ Latency of logs calculated on a receiver that has only full processing load. The log under test is logged on the receiver under COM1. RVSB, RGEB, SFDB, FRMB and WRCB logs are logged on the receiver under COM2.

⁶ Latency of logs calculated on a receiver that has full processing and communication port load. The latency is calculated as per the EGNOS validation test procedure. The active periodic logs are logged on the receiver under COM1.

The footnotes that follow show the validity of logs when conditions exist.

⁷ Only valid after FINETIME is set.

⁸ Only valid after a position solution has been computed.

⁹ Only valid after the position of a complete, or partial, almanac.

7 NOVATEL FORMAT DATA LOGS

The Portable MEDLL receiver is capable of generating many NovAtel-format output logs, in either ASCII or binary format.

The following log descriptions are listed in alphabetical order. Each log first lists the ASCII format, then the binary format description.

ASCII LOG STRUCTURE

Log types ending with the letter A are output in ASCII format (e.g., POSA). The structures of all ASCII logs follow the general conventions as noted here:

- 1. The lead code identifier for each record is '\$'.
- 2. Each log is of variable length depending on amount of data and formats.
- 3. All data fields are delimited by a comma ',' with the exception of the last data field, which is followed by a '*' to indicate end-of-message data.
- 4. Each log ends with a hexadecimal number preceded by an asterisk and followed by a line termination using the carriage return and line feed characters, e.g., *xx[CR][LF]. This 8-bit value is an exclusive OR (XOR) of all bytes in the log, excluding the '\$' identifier and the asterisk preceding the two checksum digits.

Structure:

```
$xxxx, data field..., data field..., data field... *xx [CR][LF]
```

BINARY LOG STRUCTURE

Log types ending with the letter B are output in binary format (e.g., POSB). The structures of the binary logs follow the general conventions as noted here:

1. Basic format of:

Sync	3 bytes
Checksum	1 byte
Message ID	4 bytes unsigned integer
Message byte count	4 bytes unsigned integer
Data	x bytes

2. The Sync bytes will always be:

Byte	Hex	Decimal
First	AA	170
Second	44	68
Third	11	17

- 3. The Checksum is an XOR of all the bytes, including the 12 header bytes with CRC = 00.
- 4. The Message ID identifies the type of log to follow.
- 5. The Message byte count equals the total length of the data block including the header.
- **NOTE:** Maximum flexibility for logging data is provided by these logs. You are cautioned however, to recognize that each log requested requires additional CPU time and memory buffer space. Too many logs may result in lost data and degraded CPU performance. Buffer overload can be monitored using the idle time and buffer overload bits from the RVSB log. Please refer to *Table 11, Receiver Self-Test Status Codes on Page 69.*

Туре	Size (bytes)	Size (bits)	Description
char	1	8	The char type is used to store the integer value of a member of the representable character set. That integer value is the ASCII code corresponding to the specified character.
int	4	32	The size of a signed or unsigned int item is the standard size of an integer on a particular machine. On a 32-bit processor (such as the NovAtel GPSCard), the int type is 32 bits, or 4 bytes. The int types all represent signed values unless specified otherwise. Signed integers are represented in two's-complement form. The most-significant bit holds the sign: 1 for negative, 0 for positive and zero.
double	8	64	The double type contains 64 bits: 1 for sign, 11 for the exponent, and 52 for the mantissa. Its range is $\pm 1.7E308$ with at least 15 digits of precision.
float	4	32	The float type contains 32 bits: 1 for the sign, 8 for the exponent, and 23 for the mantissa. Its range is $\pm 3.4E38$ with at least 7 digits of precision.
long	4	32	The long type is a 32-bit integer in the range -2147483647 to +2147483648

The following describes the format types used in the description of binary logs.

Each byte within an **int** has its own address, and the smallest of the addresses is the address of the int. The byte at this lowest address contains the eight least significant bits of the double word, while the byte at the highest address contains the eight most significant bits. Similarly the bits of a "double" type are stored least significant byte first. This is the same data format used by personal computers.

COMPRESSED BINARY LOG STRUCTURE

Log types ending with the letter D are also output in binary format (e.g., RGED). However, the RGED message is a compressed form of the RGEB message.

TIME CONVENTIONS

All logs report GPS time expressed in GPS weeks and seconds into the week. The time reported is not corrected for the local receiver's clock error. To derive the closest GPS time, one must subtract the clock offset shown in the CLKB log (field 4) from GPS time reported.

GPS time is based on an atomic time scale. Universal Time Coordinated (UTC) time is also based on an atomic time scale, with an offset of seconds applied to coordinate Universal Time to GPS time. GPS time is designated as being coincident with UTC at the start date of January 6, 1980 (00 hours) GMT. GPS time does not count leap seconds, and therefore an offset exists between UTC and GPS time. The GPS week consists of 604800 seconds, where 000000 seconds is at Saturday midnight. Each week at this time, the week number increments by one, and the seconds into the week resets to 0. See also the section on *Compliance with GPS Week Rollover on Page viii*.

LOG DESCRIPTIONS

The log references that follow are in alphabetical order as in Table 2, Portable MEDLL Logs Summary on Page 36.

For binary logs, the 32-bit CRC is calculated with all fields in the log filled except for the checksum field, which is zero. For the ASCII logs, the 32-bit CRC is calculated from all fields of the log after the '\$' symbol. Once the CRC has been calculated, the log checksum is calculated in the normal fashion, in order to preserve the standard NovAtel log format.

The GPS seconds into the week value is stored in a number of different ways within the receiver. Depending on which log is being output, the time may be derived from a different source. However, all sources of time are interconnected. Generally, the seconds into the week field is stored as either an integer (in milliseconds) or a floating-point value before being output in the log.

The CRC for the Portable MEDLL logs uses the standardized IEEE 802 CRC algorithm. The expanded polynomial for the algorithm is:

 $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$

\$AGCA/B AGC AND A/D INFORMATION

The AGCA/B log contains AGC related information. This information includes information about the AGC gain, A/D bin values and AGC control statistics.

\$AGCA

Structure:

\$AGCA week seconds rec_	_status # RF
RF_type bin 1 bin 2 bin	n 3 bin 4 bin 5 bin 6
Gain 1ms_AGC 1ms_Chan	bins_rms gof_stat
:	
next RF deck if required	*xx [CR][LF]

Field #	Field type	Data Description	Example
1	\$AGCA	Log header	\$AGCA
2	week	GPS week number	932
3	seconds	GPS seconds into the week	256542.00
4	rec_status	Self-test status of the receiver (see Table 11, Page 69)	43A00FF
5	# RF	Number of RF decks reported in this message.	2
6	RF_type	0 = GPS_L1, all others are reserved for future usage.	0
7	bin 1	A/D Bin 1	0.1022
8	bin 2	A/D Bin 2	0.1813
9	bin 3	A/D Bin 3	0.2380
10	bin 4	A/D Bin 4	0.2363
11	bin 5	A/D Bin 5	0.1558
12	bin 6	A/D Bin 6	0.0864
13	gain	AGC Gain	3125
14	1ms_AGC	Estimate of the receiver noise based on an A/D data histogram. 1 ms noise floor calculated using the A/D bin values.	1557822.00
15	1ms_Chan	Estimate of the receiver noise that is either an AGC estimate or measured power in a 1 ms post correlation accumulation from a searching channel.	1557822.00
16	bins_rms	Estimate of the variance of the receiver noise based on time smoothed A/D data histograms. Root mean squared value of the A/D bins calculated using the expected values as truth.	0.9957
17	gof_stat	The chi-squared test statistic estimating the goodness of fit between a current A/D data histogram to an A/D data histogram that was obtained at start-up by averaging several A/D histogram samples. Goodness of Fit test statistic for the A/D bins.	0.00008
1829		Next RF Deck if required.	
Variable	*xx	Checksum	*66
Variable	[CR][LF]	Sentence terminator	[CR][LF]

Example:

\$AGCA,932,256542.00,43A00FF,2,0,0.1022,0.1813,0.2380,0.2363,0.1558,0.0864,3125,1557822.00,1557822.00,0.995 7,0.000008,1,0.0973,0.1722,0.2353,0.2406,0.1637,0.0909,3361,1552060.00,1552060.00,0.9935,0.000042*66 [CR][LF]

\$AGCB

Format:

Message ID = 74 Message byte count = 32 + (r * 48) where r is the # of RF decks.

Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	Char		0
(header)	Checksum	1	Char		3
	Message ID	4	Integer		4
	Message byte count	4	Integer	bytes	8
2	Week number	4	Integer	weeks	12
3	Time of week	8	Double	seconds	16
4	Receiver status	4	Integer	(See Table 11, Page 69)	24
5	No. of RF decks	4	Integer	number of receiver RF decks	28
6	RF Type	4	Integer	0 = GPS_L1, all others are reserved for future usage.	32
7	A/D Bin 1 (Most Neg.)	4	Float	percentage	36
8	A/D Bin 2	4	Float	percentage	40
9	A/D Bin 3	4	Float	percentage	44
10	A/D Bin 4	4	Float	percentage	48
11	A/D Bin 5	4	Float	percentage	52
12	A/D Bin 6 (Most Pos.)	4	Float	percentage	56
13	AGC Gain	4	Integer	0 to 99,999 (0 is max)	60
14	1ms Noise Floor From AGC	4	Float		64
15	1ms Noise Floor From Channels	4	Float		68
16	A/D Bins RMS	4	Float		72
17	A/D Goodness of Fit Test Statistic	4	Float		76
1829	Next RF Deck if required	48			80

ALMA/B DECODED ALMANAC

This log contains the decoded almanac parameters from sub-frames four and five as received from the satellite with the parity information removed and appropriate scaling applied. Multiple messages are transmitted, one for each SV almanac collected.

The Ionospheric Model parameters (IONA/B) and the UTC Time parameters (UTCA/B) are also provided, following the last almanac record. These cannot be logged individually or independently of the ALMA/B message. They are, however, described separately under their respective names.

For more information on Almanac data, refer to the GPS SPS Signal Specification.

NOTE: In order to limit CPU loading while decoding the almanac, all almanac data is decoded from a single tracked satellite, arbitrarily chosen among all tracking channels.

ALMA

Structure:

\$ALMA Prn ecc	seconds week w	ra w M _O	af0 af1	cor-mean-motion
A incl-angle	health-4 health-5	health-alm	*xx [CR]	[LF]

Field #	Field type	Data Description	Example
1	\$ALMA	Log header	\$ALMA
2	prn	Satellite PRN number for current message (1-32)	11
3	ecc	Eccentricity	3.55577E-003
4	seconds	Almanac reference time, seconds into the week	32768
5	week	Almanac reference week (GPS week number)	745
6	Ŵ	Rate of right ascension, radians	-7.8860E-009
7	ra	Right ascension, radians	-6.0052951E-002
8	W	Argument of perigee, radians	-1.1824254E+000
9	M _O	Mean anomaly, radians	1.67892137E+000
10	afo	Clock aging parameter, seconds	-1.8119E-005
11	af1	Clock aging parameter, seconds/second	-3.6379E-012
12	cor-mean-motion	Corrected mean motion, radians/second	1.45854965E-004
13	А	Semi-major axis, metres	2.65602281E+007
14	incl-angle	Angle of inclination, radians	9.55576E-001
15	health-4	Anti-spoofing and SV config from sub-frame 4, page 25	1
16	health-5	SV health, 6 bits/SV (sub-frame 4 or 5, page 25)	0
17	health-alm	SV health, 8 bits (almanac)	0
18	*хх	Checksum	*20
19	[CR][LF]	Sentence terminator	[CR][LF]
:			
1 - 19	\$ALMA	Last satellite PRN almanac message	
1 - 11	\$IONA	Ionospheric Model Parameters	
1 - 11	\$UTCA	UTC Time Parameters	

Example:

\$ALMA,1,4.99010E-003,503808,67,-7.8975E-009,5.58933014E-001,-1.7435100E+000, -1.3147095E+000,1.55449E-004,0.00000E+000,1.45861599E-004,2.65594229E+007, 9.62689E-001,1,0,0*22[CR][LF]

•••

\$ALMA,31,9.92775E-003,503808,67,-8.1832E-009,-2.6301490E+000,8.33547783E-001, -2.8544401E-001,2.19345E-005,0.00000E+000,1.45849203E-004,2.65609277E+007, 9.47985E-001,1,0,0*19[CR][LF]

\$IONA,2.3283064365386962E-008,0.0000000000000000000,-1.192092895507812E-007, 1.1920928955078122E-007,1.433600000000018E+005,-1.96608000000002E+005,0. 000000000000000E+000,1.966080000000019E+005*0A[CR][LF]

\$UTCA,1.8626451492309570E-008,2.8421709430404010E-014,503808,67,990,13,13, 5*05[CR][LF]

ALMB

Field #	Field Type		Bytes	Format	Units	Offset
1	Sync		3			0
(header)	Checksum		1			3
	Message ID		4			4
	Message byte count		4	integer	bytes	8
2	Satellite PRN number		4	integer	dimensionless	12
3	Eccentricity		8	double	dimensionless	16
4	Almanac ref. time		8	double	seconds	24
5	Almanac ref. week		4	integer	weeks	32
6	Rate of right ascension	Ŵ	8	double	radians/second	36
7	Right ascension		8	double	radians	44
8	Argument of perigee	W	8	double	radians	52
9	Mean anomaly	Мо	8	double	radians	60
10	Clock aging parameter	a _{f0}	8	double	seconds	68
11	Clock aging parameter	af1	8	double	seconds/second	76
12	Corrected mean motion		8	double	radians/second	84
13	Semi-major axis	А	8	double	metres	92
14	Angle of inclination		8	double	radians	100
15	SV health from sub-frame 4		4	integer		108
16	SV health from sub-frame 4 or 5		4	Integer		112
17	SV health from almanac		4	Integer		116

Format: Message ID = 18 Message byte count = 120

CDSA/B COMMUNICATION AND DIFFERENTIAL DECODE STATUS

The Portable MEDLL receiver maintains a running count of a variety of status indicators of the data link. This log outputs a report of those indicators.

Parity and framing errors will occur if poor transmission lines are encountered or if there is an incompatibility in the data protocol. If errors occur, you may need to confirm the baud rate, number of data bits, number of stop bits, and parity of both the transmitting and receiving ends. Overrun errors will occur if more characters are sent to the UART than can be removed by the on-board microprocessor.

CDSA

Structure:

\$CDSA	week se	conds xon1 cts1 parity1 overrun1 framing1 rx1 tx1	
Xon2	cts2 pa	rity2 overrun2 framing2 rx2 tx2	
Res'd	Res'd F	Res'd Res'd Res'd Res'd Res'd Res'd Res'd Res'd	
Res'd	Res'd	Res'd *xx [CR][LF]	
Field #	Field type	Data Description	Example
1	\$CDSA	Log header	\$CDSA
2	week	GPS week number	787
3	seconds	GPS seconds into the week	500227
4	xon1	Flag to indicate that the com1 is using XON/XOFF handshaking protocol and port has received an XOFF and will wait for an XON before sending any more data.	0
5	cts1	Flag to indicate that com1 is using CTS/RTS handshake protocol and CTS line port has been asserted. The port will wait for the line to de-assert before sending any more data.	0
6	parity1	A running count of character parity errors from the UART of COM1	0
7	overrun1	A running count of UART buffer overrun errors of COM1	0
8	framing1	A running count of character framing error from the UART of COM1	0
9	rx1	A running count of the characters received from COM1	0
10	tx1	A running count of the characters sent out COM1	9
11	xon2	Flag to indicate that the COM2 is using XON/XOFF handshaking protocol and port has received an XOFF and will wait for an XON before sending any more data.	0
12	cts2	Flag to indicate that COM2 is using CTS/RTS handshake protocol and CTS line port has been asserted. The port will wait for the line to de-assert before sending any more data.	0
13	parity2	A running count of character parity errors from the UART of COM2	0
14	overrun2	A running count of UART buffer overrun errors of COM2	0
15	framing2	A running count of character framing error from the UART of COM2	0
16	rx2	A running count of the characters received from COM2	0
17	tx2	A running count of the characters sent out COM2	9
18		Reserved. Set to 0.	0
19		Reserved. Set to 0.	0
20		Reserved. Set to 0.	0
21		Reserved. Set to 0.	0
22		Reserved. Set to 0.	0
23		Reserved. Set to 0.	0
24		Reserved. Set to 0.	0
25		Reserved. Set to 0.	0
26		Reserved. Set to 0.	0
27		Reserved. Set to 0.	0
28		Reserved. Set to 0.	0
29		Reserved. Set to 0.	0
30		Reserved. Set to 0.	0

Field #	Field type	Data Description	Example
31	*хх	Checksum	*33
32	[CR][LF]	Sentence terminator	[CR][LF]
Example:	\$CDSA,787,5	500227,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,	

CDSB

ormat:		age byte count = 128	_		
Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	char		(
(header)	Checksum	1	char		
	Message ID	4	integer		
	Message byte count	4	integer	bytes	
2	Week number	4	integer	weeks	1
3	Time of week	4	integer	seconds	1
4	Xon COM1	4	integer	1 or 0	2
5	CTS COM1	4	integer	1 or 0	2
6	Parity errors COM1	4	integer	Total count	2
7	Overrun errors COM1	4	integer	Total count	3
8	Framing error COM1	4	integer	Total count	3
9	Bytes received in COM1	4	integer	Total count	4
10	Bytes sent out COM1	4	integer	Total count	4
11	Xon COM2	4	integer	1 or 0	4
12	CTS COM2	4	integer	1 or 0	5
13	Parity errors COM2	4	integer	Total count	5
14	Overrun errors COM2	4	integer	Total count	6
15	Framing error COM2	4	integer	Total count	6
16	Bytes received in COM2	4	integer	Total count	6
17	Bytes sent out COM2	4	integer	Total count	7
18	Reserved. Set to 0.	4	integer	Total count	7
19	Reserved. Set to 0.	4	integer	Total count	8
20	Reserved. Set to 0.	4	integer	Total count	8
21	Reserved. Set to 0.	4	integer	Total count	8
22	Reserved. Set to 0.	4	integer	Total count	9
23	Reserved. Set to 0.	4	integer	Total count	9
24	Reserved. Set to 0.	4	integer	Total count	10
25	Reserved. Set to 0.	4	integer	Total count	10
26	Reserved. Set to 0.	4	integer	Total count	10
27	Reserved. Set to 0.	4	integer	Total count	11
28	Reserved. Set to 0.	4	integer	Total count	11
29	Reserved. Set to 0.	4	integer	Total count	12
30	Reserved. Set to 0.	4	integer	Total count	12

CLKA/B RECEIVER CLOCK OFFSET DATA

This log is used to monitor the state of the receiver time. Its values will depend on the CLOCKADJUST command. If CLOCKADJUST is enabled, then the offset and drift times will approach zero. If not enabled, then the offset will grow at the oscillator drift rate. Disabling CLOCKADJUST and monitoring the CLKA/B log will allow you to determine the error in your GPSCard receiver reference oscillator as compared to the GPS satellite reference.

All logs report GPS time not corrected for local receiver clock error. To derive the closest GPS time, you must subtract the clock offset (field #4 of the CLKA log) from the reported GPS time.

Field #6 is the output of a Gauss-Markov Selective Availability clock dither estimator. This value reflects both the collective SA-induced short-term drift of the satellite clocks, when SA is active, as well as any range bias discontinuities that would normally affect the clock model's offset and drift states. With SA off this value is much smaller than the example shown.

The CLKA/B log is not synchronous to the 1PPS.

Clock model status is not related to clock type. There is no effect on the validity of the clock model data when the CLOCKADJUST command is set to DISABLE. Upon receiver start-up, the data in the CLKA/B log is not valid. After a position-time solution this log will show the difference between the 1PPS and GPS epoch. The CM STATUS field shows the current stability of the clock model. If CLOCKADJUST is disabled, CM STATUS is meaningless. CLOCKADJUST is disabled by default for Portable MEDLL.

The internal units of the clock model's three states (offset, drift and GM state) are meters, meters per second, and meters. When scaled to time units for the output log, these become seconds, seconds per second, and seconds, respectively.

CLKA

Structure: + 07 - - - -

\$CLKA	week seco	nds offset drift G-M state offset std drift s	td cm status
*xx [C	CR][LF]		
Field #	Field type	Data Description	Example
1	\$CLKA	Log header	\$CLKA
2	week	GPS week number	637
3	seconds	GPS seconds into the week	511323.00
4	offset	Receiver clock offset (s). A positive offset implies that the receiver clock is ahead of GPS Time. To derive GPS time, use the following formula: GPS time = receiver time – (offset)	-4.628358547E-003
5	drift	Receiver clock drift (s/s). A positive drift implies that the receiver clock is running faster than GPS Time.	-2.239751396E-007
6	G-M state	The output value of the Gauss-Markov Selective Availability clock dither estimator (s).	2.061788299E-006
7	offset std	Standard deviation of receiver clock offset (s).	5.369997167E-008
8	drift std	Standard deviation of receiver drift (s/s)	4.449097711E-009
9	cm status	Receiver Clock Model Status (0 = valid, -20 to -1 imply that the model is in the process of stabilization)	0
10	*хх	Checksum	*7F
11	[CR][LF]	Sentence terminator	[CR][LF]

Example:

\$CLKA,841,499296.00,9.521895494E-008,-2.69065747E-008,2.061788299E-006, 9.642598169E-008,8.685638908E-010,0*4F[CR][LF]

CLKB

Format: Message ID = 02

Message byte count = 68

Field #	Field Type	Bytes	Format	Units	Offset
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	Week number	4	integer	weeks	12
3	Seconds of week	8	double	S	16
4	Clock offset	8	double	S	24
5	Clock drift	8	double	s/s	32
6	SA Gauss-Markov state	8	double	S	40
7	StdDev clock offset	8	double	S	48
8	StdDev clock drift	8	double	s/s	56
9	Clock model status	4	integer	0 = good, -1 to -20 = bad	64

CRLA/B CORRELATOR LOCATION IN C/A CHIPS

It is recommended that this be output only 'once' or 'ontime'. The 'onnew' and 'onchanged' options have been disabled. The order that the correlator locations are output is identical to the order of the residuals in the MPMA/B (multipath meter) log.

CRLA

Structure:

\$CRLA	week	sec	#chans	chan#	#corr	1^{st}	corr	 12^{th}	corr		
\$CRLA	week	sec	#chans	chan#	#corr	1^{st}	corr	 12^{th}	corr	*xx	[CR][LF]

Field #	Field Type	Data Description	Examples
1	\$CRLA		\$CRLA
2	Week Number	GPS week number	2
3	Seconds of Week	GPS seconds into the week	234534.56
4	Number of Channels		16
5	Channel Number		0
6	Number of Correlators		12
7	1 st correlator location	Location of correlator 1 (in C/A chips)	-0.04
		Repeated for each correlator	
18	12 th correlator location	Location of correlator 12	1.40
19	5 – 19 Repeated for # of Channels		
variable	*xx	Checksum	*29
variable	[CR][LF]	Sentence terminator	[CR][LF]

Example:

\$CRLA,61,158572.947,16,

0,12,-0.15,-0.10,-0.05,0.00,0.05,0.10,0.15,0.30,0.50,0.70,0.90,1.30,

 $1, 12, -0.15, -0.10, -0.05, 0.00, 0.05, 0.10, 0.15, 0.30, 0.50, 0.70, 0.90, 1.30, \dots$

15,12,-0.60,-0.40,-0.20,0.00,0.20,0.40,0.60,0.80,1.00,1.20,1.40,1.60*28 [CR][LF]

CRLB

Format: Message ID = 96

Message byte count = 28+(#chans*56)

Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	Char		0
(header)	Checksum	1	Char		3
	Message ID	4	Integer		4
	Message Byte Count	4	Integer	bytes	8
2	Week Number	4	Integer	weeks	12
3	Seconds of Week	8	Double	seconds	16
4	Number of Channels	4	Integer		24
5	Channel Number	4	Integer		28
6	Number of Correlators	4	Integer		32
7	1 st correlator location	4	Float	C/A chips	36
18	12 th correlator location	4	Float	C/A chips	80
19	Next channel number				
	Offset = 28 + (chan#*56) where chan# = 0 to (number of cha	nnels-1)		

DOPA/B DILUTION OF PRECISION

The dilution of precision data is calculated using the geometry of only those satellites that are currently being tracked and used in the position solution by the GPSCard and updated once every 60 seconds. Therefore, the total number of data fields output by the log is variable, depending on the number of satellites being tracked. Twelve is the maximum number of satellite PRNs contained in the list.

NOTE: If insufficient satellites are being tracked to calculate DOP values, the last calculated DOP values are output.

DOPA

Structure:

\$DOPA week sec gdop pdop htdop hdop tdop #sats prns *xx [CR][LF]

Field #	Field type	Data Description	Example
1	\$DOPA	Log header	\$DOPA
2	week	GPS week number	637
3	sec	GPS seconds into the week	512473.00
4	gdop	Geometric dilution of precision - assumes 3-D position and receiver clock offset (all 4 parameters) are unknown	2.9644
5	pdop	Position dilution of precision - assumes 3-D position is unknown and receiver clock offset is known	2.5639
6	htdop	Horizontal position and time dilution of precision	2.0200
7	hdop	Horizontal dilution of precision	1.3662
8	tdop	Time dilution of precision - assumes 3-D position is known and only receiver clock offset is unknown	1.4880
9	#sats	Number of satellites used in position solution (0-12). See the notes above.	6
10	prns	PRN list of SV PRNs tracking (1-32), null field until first position solution available	18,6,11,2,16,19
variable	*хх	Checksum	*29
variable	[CR][LF]	Sentence terminator	[CR][LF]

Example:

\$DOPA,637,512473.00,2.9644,2.5639,2.0200,1.3662,1.4880,6,18,6,11,2,16,19
*29[CR][LF]

DOPB

Format: Message ID = 07

Message byte count = 68+(#sats*4)

Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	Week number	4	integer	weeks	12
3	Seconds of week	8	double	seconds	16
4	gdop	8	double		24
5	pdop	8	double		32
6	htdop	8	double		40
7	hdop	8	double		48
8	tdop	8	double		56
9	Number of satellites used	4	integer		64
10	1st PRN	4	integer		68
11	Next satellite PRN				
	Offset = $68 + (sats*4)$ where sats = 0 to	o (number d	of sats-1)		

ETSA/B EXTENDED CHANNEL TRACKING STATUS

These logs provide channel tracking status information for each of the GPSCard parallel channels.

NOTE: This log is intended for status display only; since some of the data elements are not synchronized together, they are not to be used for measurement data. Please use the RGEA/B/D and SATA/B logs to obtain synchronized data for post processing analysis.

As shown in *Table 4* (Channel Tracking Status word), bit 19 shows the observation is for L1. This is to aid in parsing the data.

ETSA

Structure:

\$ETS	A week	seconds	sol st	tatus # ob	os					
prn	ch tr-st	tatus dopp	C/No	residual	locktime	psr	reject	code		
:										
prn	ch tr-st	atus dopp	C/No	residual	locktime	psr	reject	code	*xx	[CR][LF]

Field #	Field type	Data Description	Example		
1	\$ETSA	Log header	\$ETSA		
2	week	GPS week number	850		
3	seconds	GPS seconds into the week (receiver time, not corrected for clock	332087.00		
		error, CLOCKADJUST enabled)			
4	sol status	Solution status (see Table 3, on Page 53)	0		
5	# obs	Number of observations to follow	24		
6	prn	Satellite PRN number (1-32) (channel 0) ¹⁰	7		
7	ch tr-status	Hexadecimal number indicating channel tracking status (See Table 4,	00082E04		
		on Page 53)			
8	dopp	Instantaneous carrier Doppler frequency (Hz)	-613.5		
9	C/No	Carrier to noise density ratio (dB-Hz)	54.682		
10	residual	Residual from position filter (m)	27.617		
11	locktime	Number of seconds of continuous tracking (no cycle slips)	12301.4		
12	psr	Pseudorange measurement (m)	20257359.57		
13	reject code	Indicates whether the range is valid (code = 0) or not (see Table 7, on	0		
		Page 54)			
14-21		next observation			
94-101		last observation			
102	*XX	Checksum	*19		
103	[CR][LF]	Sentence terminator [CR][LF]			

¹⁰ Satellite PRN = 0 if the channel is idle.

Example (carriage returns have been added between observations for clarity):

```
$ETSA,850,332087.00,0,24,
7,00082E04,-613.5,54.682,27.617,12301.4,20257359.57,0,
7,00582E0B,-478.1,46.388,0.000,11892.0,20257351.96,13,
5,00082E14,3311.2,35.915,1.037,1224.4,24412632.47,0,
5,00582E1B,2580.4,39.563,0.000,1186.7,24412629.40,13,
9,00082E24,1183.1,53.294,-29.857,7283.8,21498303.67,0,
9,00582E2B,921.9,44.422,0.000,7250.2,21498297.13,13,
2,00082E34,-2405.2,50.824,-20.985,19223.6,22047005.47,0,
2,00582E3B,-1874.1,41.918,0.000,19186.7,22046999.44,13,
4,00082E44,3302.8,47.287,7.522,3648.1,22696783.36,0,
4,00582E4B,2573.6,37.341,0.000,3191.2,22696778.15,13,
14,00082E54,2132.7,41.786,-22.388,541.3,25117182.07,0,
14,00582E5B,1661.7,33.903,0.000,500.7,25117179.63,13,
26,00082E64,-3004.3,43.223,2.928,14536.2,25074382.19,0,
26,00582E6B,-2340.9,33.019,0.000,14491.7,25074378.01,13,
15,00082E74,-3037.7,43.669,0.508,12011.5,24104788.88,0,
15,00582E7B,-2367.0,34.765,0.000,11842.4,24104781.53,13,
24,00082E84,3814.0,37.081,7.511,95.7,25360032.49,0,
24,00582E8B,2972.0,24.148,0.000,5.2,25360030.13,13,
28,00082A90,-9800.9,0.000,0.000,0.0,0.00,9,
28,00382A90,-7637.0,0.000,0.000,0.0,0.0,9,
3,000822A0,-3328.3,0.000,0.000,0.0,0.0,9,
3,005828A0,-2593.5,0.000,0.000,0.0,0.00,9,
27,000822B0,-3851.7,0.000,0.000,0.0,0.0,0,9,
27,005828B0,-3001.7,0.000,0.000,0.0,0.00,9
*41[CR][LF]
```

ETSB

Format:

Message ID = 48

Message byte count = 32 + (n*52) where n is number of channels in receiver


Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	Week number	4	integer	weeks	12
3	Time of week	8	double	seconds	16
4	Solution status	4	integer	(See Table 3, on Page 53)	24
5	No. of channels	4	integer	number of channels in receiver	28
6	PRN number (chan 0)	4	integer		32
7	Channel tracking status	4	integer	(See Table 4, on Page 53)	36
8	Doppler	8	double	Hz	40
9	C/N ₀ (db-Hz)	8	double	db Hz	48
10	Residual	8	double	metres	56
11	Locktime	8	double	seconds	64
12	Pseudorange	8	double	metres	72
13	Rejection code	4	integer	(See Table 7, on Page 54)	80
14	Offset = 32 + (chan * 52) where char	varies from 0 - h	ighest channel nu	mber	

Value	Description					
0	Solution computed					
1	Insufficient observations					
2	No convergence					
3	Singular AtPA Matrix					
4	Covariance trace exceeds maximum (trace > 1000 m)					
5	Test distance exceeded (maximum of 3 rej if distance > 10 Km)					
6	Not yet converged from cold start					

Table 3 **GPSCard Solution Status**

Higher numbers are reserved for future use

Channel Tracking Status Bits Table 4

1 See Table 5, Bits 12-14: Correlator Spacing on Page 54.

2 GEO will never be set for MEDLL channels 0-9

3 Antenna will always be primary

- 4 MEDLL is always 0
- 5 MEDLL is always 0
- 6 MEDLL is always 0
- 7 MEDLL channels 10-11 will be 1 and MEDLL channels 0-9 will be 0.

8 When phase, parity, and code lock have been established, the channel has reached steady state tracking in state 4.

Table 5 Bits 0 - 3 : Chainlei Tracking State								
Value of Bits 0-3	Description	Value of Bits 0-3	Description					
0	L1 Idle (State 0)	6	Reserved. (State 6)					
1	L1 Sky search (State 1)	7	L1 Frequency-lock loop (State 7)					
2	L1 Dual frequency band pull-in (State 2)	8	Reserved					
3	L1 Narrow frequency band pull-in (State 3)	9						
4	L1 Steady state tracking (State 4)	10						
5	L1 Re-acquisition (State 5)	11						

Table 5 Bits 0 - 3 : Channel Tracking State

Higher numbers are reserved for future use

Table 6 Bits 12-14 : Correlator Spacing

State	Description
0	Unknown: this only appears in versions of software previous to x.4x, which didn't use this field
1	Standard correlator: spacing = 1 chip
2	Reserved
3	MET: uses Early-Late Slope Technique to improve correlator performance in reducing errors due to multipath
4	Reserved.
5	MEDLL: decomposes the incoming signal into direct-path and reflected-path components to reduce errors due to multipath

Higher numbers are reserved for future use

Table 7Range Reject Codes

Value	Description
0	Observations are good
1	Bad satellite health is indicated by ephemeris data
2	Old ephemeris due to data not being updated during last 3 hours
3	Eccentric anomaly error during computation of the satellite's position
4	True anomaly error during computation of the satellite's position
5	Satellite coordinate error during computation of the satellite's position
6	Elevation error due to the satellite being below the cut-off angle
7	Misclosure too large due to excessive gap between estimated and actual positions
8	No differential correction is available for this particular satellite
9	Ephemeris data for this satellite has not yet been received
10	Invalid IODE due to mismatch between differential stations
11	Locked out of the position solution by the user
12	Low Power: satellite rejected due to low signal/noise ratio
13	
14	Reserved.
15	
16	
17	GEO satellite not used in the position filter for Portable MEDLL

Higher numbers are reserved for future use

FRMA/B FRAMED RAW NAVIGATION DATA

This message contains the raw framed navigation data. An individual message is sent for each PRN being tracked. The message is updated with each new frame, therefore it is best to log the data with the 'onnew' trigger activated.

The types of navigation frame data which are output by this log are defined using the \$SETFRAMETYPE command.

NOTES: The most significant bits of the data in the message will be padded with zeroes in order to fill the last complete data byte.

When the raw framed navigation data is output from the receiver, any bit errors encountered will have been corrected.

FRMA

\$FRMA week seconds prn cstatus # of bits framed raw data

*xx	[CR][LF]

Field #	Field type	Data Description	Example
1	\$FRMA	Log header	\$FRMA
2	week	GPS week number	845
3	seconds	GPS seconds into the week	238623.412
4	prn	PRN of satellite from which data originated	120
5	cstatus	Channel Tracking Status	80811F14
6	# of bits	Number of bits transmitted in the message. 250 for GEO, 300 for GPS	250
7	framed raw data	One field of raw framed navigation data	9AFE5354656C2053796E6368726F6E69636974792020202020 202020B0029E40
8	*ХХ	Checksum	*3F
9	[CR][LF]	Sentence terminator	[CR][LF]

Example:

\$FRMA,845,238623.412,120,80811F14,250, 9AFE5354656C2053796E6368726F6E69636974792020202020202020B0029E40*3F[CR][LF]

FRMB

Format: Message ID = 54		Message byte cou	ole		
Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	Week number	4	integer	weeks	12
3	Seconds of week	8	double	seconds	16
4	PRN number	4	integer	1-999	24
5	Channel Status	4	integer	N/A	28
6	Number of Bits	4	integer	250 for GEO; 300 for GPS	32
7	Data Sub-frame	32 for GEO; 38 for GPS	char	N/A	36

IONA/B DECODED ALMANAC - IONOSPHERIC MODEL PARAMETERS

The Ionospheric Model parameters (IONA/B) are provided following the last almanac records when an ALMA/B message has been logged. The IONA/B message cannot be logged individually or independently of the ALMA/B message.

For more information on Almanac data, refer to the GPS SPS Signal Specification¹¹.

IONA

Structure:

\$IONA	act	alot	a2ot	a3ot	bct	blot	b2ot	b3ot	*xx	[CR][LF]

Field #	Field type	Data Description	Example
1	\$IONA	Log header	\$IONA
2	act	Alpha constant term, seconds	1.0244548320770265E-008
3	a1ot	Alpha 1st order term, sec/semicircle	1.4901161193847656E-008
4	a2ot	Alpha 2nd order term, sec/(semic.) ²	-5.960464477539061E-008
5	a3ot	Alpha 3rd order term, sec/(semic.) ³	-1.192092895507812E-007
6	bct	Beta constant term, seconds	8.806400000000017E+004
7	b1ot	Beta 1st order term, sec/semicircle	3.276800000000010E+004
8	b2ot	Beta 2nd order term, sec/(semic.) ²	-1.96608000000001E+005
9	b3ot	Beta 3rd order term, sec/(semic.) ³	-1.96608000000001E+005
10	*XX	Checksum	*02
11	[CR][LF]	Sentence terminator	[CR][LF]

Example:

\$IONA,1.0244548320770265E-008,1.4901161193847656E-008,-5.960464477539061E-008, -1.192092895507812E-007,8.806400000000017E+004,3.2768000000000010E+004, -1.96608000000001E+005,-1.96608000000001E+005*02[CR][LF]

¹¹ For copies of the Interface Control Document (ICD)-GPS-200 contact: ARINC Research Corporation, 2551 Riva Road, Annapolis, MD 21401-7465. Their website is at <u>http://www.arinc.com/</u>.

IONB Format

mat	Message $ID = 16$	Message byte count $= 76$
mai	Message ID = 10	Message byte count = 70

Field #	Field Type	Bytes	Format	Units	Offset
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	Alpha constant term	8	double	seconds	12
3	Alpha 1st order term	8	double	sec/semicircle	20
4	Alpha 2nd order term	8	double	sec/(semic.) ²	28
5	Alpha 3rd order term	8	double	sec/(semic.) ³	36
6	Beta constant term	8	double	seconds	44
7	Beta 1st order term	8	double	sec/semic	52
8	Beta 2nd order term	8	double	sec/(semic.) ²	60
9	Beta 3rd order term	8	double	sec/(semic.) ³	68

MPMA/B MULTIPATH METER

This log outputs information that estimates the amount of multipath the antenna is experiencing and how well MEDLL has modelled the multipath signals.

It is recommended that this log be output only with the 'onnew' trigger option. There will be one log for every tracked satellite per epoch. For example, if eleven satellites are being tracked, there will be eleven instances of this log every epoch. MEDLL runs every second, so one epoch is equivalent to one second.

\$MPMA week	seconds	prn chtrstat med	llstat delay	amplitude	phase
1 st in phase		12 th in phase			
1^{st} quad. phase	•••	12 th quad. phase			

xx [CR][LF]

Field #	Field Type	Data Description	Example
1	\$MPMA	Log header	\$MPMA
2	Week Number	GPS week number	0
3	Seconds of Week	GPS seconds into the week	27.77
4	PRN	Satellite identifier	29
5	Channel Tracking Status ¹²	Channel tracking status bits, see Table 4 on 53	6A84
6	MEDLL Status	MEDLL status bits, see Table 8 on Page 59	103
7	Delay	Delay of multipath signal in chips	1.08154941
8	Amplitude	Amplitude of multipath signal	0.01731431
9	Phase	Phase of multipath signal in radians	- 0.00645047
10	1 st in phase residual	In phase residual value from correlator 1	0.00160142
		Repeated for each correlator	
22	12 th in phase residual	In phase residual value from correlator 12	- 0.00196318
23	1 st Quadrature phase residual	Quadrature phase residual value from correlator 1	- 0.00418267
		Repeated for each correlator	
45	12th Quadrature phase residual	Quadrature phase residual value from correlator 12	- 0.00730140
46	*xx	Checksum	*71
47	[CR][LF]	Sentence terminator	[CR][LF]

Example:

\$MPMA,0,27.77,29,6A84,103,1.08154941,0.01731431,-0.00645047,0.00160142, 0.00164832,0.00078163,0.00001205,0.00083644,0.00240084,0.00214321,0.00079274, -0.00032872,-0.00084985,0.00000891,-0.00196318,-0.00418267,-0.00443155, -0.00665589,-0.00580890,-0.00078493,-0.00101275,0.00468876,0.00449791, -0.00126932,-0.00140528,0.00004035,-0.00730140*71[CR][LF]

¹² A description can be found on *Page 53, Table 4*

MPMB

Format:

Message ID = 95

Message byte count = 144

Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	Char		0
(header)	Checksum	1	Char		3
	Message ID	4	Integer		4
	Message Byte Count	4	Integer	bytes	8
2	Week Number	4	Integer	weeks	12
3	Seconds of Week	8	Double	seconds	16
4	PRN	4	Integer		24
5	Channel Status	4	Integer		28
6	MEDLL Status	4	Integer		32
7	Delay	4	Float	C/A chips	36
8	Amplitude	4	Float		40
9	Phase	4	Float		44
10	1 st in phase residual	4	Float		48
22	 12th in phase residual	4	Float		92
	12 th in phase residual				
23	1 st Quadrature phase residual	4	Float		96
45	12 th Quadrature phase residual	4	Float		140

The multipath amplitude and residuals are normalized with respect to the reference correlation function. D/U (desired signal power relative to undesired signal power), in units of decibels (dB), can be calculated from the amplitude of the multipath signal ($-20 * \log [\text{amplitude of multipath signal}]$).

Bit Position	Field Description
0	Sync bit: 1 if MEDLL channels in sync, 0 if not in sync. Sync bit is set to 1 if the different hardware channels use to track the same PRN are aligned.
1	Phase processing. When phase processing is on, the bit is 1; MEDLL will determine the phase of the multipath signal. If phase processing is set to 0, MEDLL will not process the phase of the multipath signal. For Portable MEDLL, the bit will always be 1 by default.
2-6	Type of MEDLL will always be 0 for Portable MEDLL.
7-9	Number of signals will always be 1 for Portable MEDLL.
10-31	Reserved. Set to 0.

 Table 8
 MEDLL Status Bits Table

POSA/B COMPUTED POSITION

This log will contain the last valid position and time calculated referenced to the antenna phase centre. The position is in geographic coordinates in degrees based on your specified datum (default is WGS-84). The height is referenced to mean sea level. The receiver time is in GPS weeks and seconds into the week. The estimated standard deviations of the solution and current filter status are also included.

POSA

Structure:

\$POSA	week	seconds	lat	lon	hgt	undulation	datum	ID	lat	std	lon	std
hgt st	d sol	status	*xx	[CR]	[LF]							

	Field type	Data Description	Example
1	\$POSA	Log header	\$POSA
2	week	GPS week number	637
3	seconds	GPS seconds into the week	511251.00
4	lat	Latitude of position in current datum, in degrees (DD.dddddddd). A negative sign implies South latitude	51.11161847
5	lon	Longitude of position in current datum, in degrees (DDD.dddddddd). A negative sign implies West longitude	-114.03922149
6	hgt	Height of position in current datum, in metres above mean sea level (MSL)	1072.436
7	undulation	Geoidal separation, in metres, where positive is above spheroid and negative is below spheroid	-16.198
8	datum ID	Current datum ID #, see Table 9, Page 61 and Table 10, Page 62.	61
9	lat std	Standard deviation of latitude solution element, in metres	26.636
10	lon std	Standard deviation of longitude solution element, in metres	6.758
11	hgt std	Standard deviation of height solution element, in metres	78.459
12	sol status	Solution status as listed in Table 3, Page 53.	0
13	*хх	Checksum	*12
14	[CR][LF]	Sentence terminator	[CR][LF]

Example:

\$POSA,637,511251.00,51.11161847,-114.03922149,1072.436,-16.198,61,26.636, 6.758,78.459,0*12[CR][LF]

POSB

Format: Message ID = 01

Message byte count = 88

Field #	Data		Format	Units	Offset
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	Week number	4	integer	weeks	12
3	Seconds of week	8	double	seconds	16
4	Latitude	8	double	degrees (+ is North, - is South)	24
5	Longitude	8	double	degrees (+ is East, - is West)	32
6	Height	8	double	metres with respect to MSL	40
7	Undulation	8	double	metres	48
8	Datum ID	4	integer		56
9	StdDev of latitude	8	double	metres	60
10	StdDev of longitude	8	double	metres	68
11	StdDev of height	8	double	metres	76
12	Solution status	4	integer		84

The following tables contain the internal ellipsoid parameters and transformation parameters used in the GPSCard. The values contained in these tables were derived from the following DMA technical reports:

- 1. TR 8350.2
 Department of Defence World Geodetic System 1984 Its Definition and Relationships with Local Geodetic Systems - Revised March 1, 1988.
- 2. TR 8350.2B Supplement to Department of Defence World Geodetic System 1984 Technical Report Part II - Parameters, Formulas, and Graphics for the Practical Application of WGS-84 - December 1, 1987.

Table 9 Reference Empsolu Constants									
ELLIPSOID	ID CODE	a (metres)	1/f						
Airy 1830	AW	6377563.396	299.3249647	0.00334085064038					
Modified Airy	AM	6377340.189	299.3249647	0.00334085064038					
Australian National	AN	6378160.0	298.25	0.00335289186924					
Bessel 1841	BR	6377397.155	299.1528128	0.00334277318217					
Clarke 1866	CC	6378206.4	294.9786982	0.00339007530409					
Clarke 1880	CD	6378249.145	293.465	0.00340756137870					
Everest (India 1830)	EA	6377276.345	300.8017	0.00332444929666					
Everest (Brunei & E.Malaysia)	EB	6377298.556	300.8017	0.00332444929666					
Everest (W.Malaysia & Singapore)	ED	6377304.063	300.8017	0.00332444929666					
Geodetic Reference System 1980	RF	6378137.0	298.257222101	0.00335281068118					
Helmert 1906	HE	6378200.0	298.30	0.00335232986926					
Hough 1960	HO	6378270.0	297.00	0.00336700336700					
International 1924	IN	6378388.0	297.00	0.00336700336700					
South American 1969	SA	6378160.0	298.25	0.00335289186924					
World Geodetic System 1972	WD	6378135.0	298.26	0.00335277945417					
World Geodetic System 1984	WE	6378137.0	298.257223563	0.00335281066475					

Table 9 Reference Ellipsoid Constants

GPSCard Datum ID	NAME	DX	DY	DZ	DATUM DESCRIPTION	ELLIPSOID
number 1	ADIND	-162	-12	206	Adindan (Ethiopia, Mali, Senegal & Sudan)	Clarke 1880
2	ARC50	-143	-90	-294		Clarke 1880
3	ARC60	-160	-8	-300	ARC 1960 (Kenya, Tanzania)	Clarke 1880
4	AGD66	-133	-48	148	Australian Geodetic Datum 1966	Australian National
5	AGD84	-134	-48	149	Australian Geodetic Datum 1984	Australian National
6	BUKIT	-384	664	-48		Bessel 1841
7	ASTRO	-104	-129	239		International 1924
8	СНАТМ	175	-38	113	Chatum 1971 (New Zealand)	International 1924
9	CARTH	-263	6	431	Carthage (Tunisia)	Clarke 1880
10	CAPE	-136	-108	-292		Clarke 1880
11	DJAKA	-377	681	-50	· · ·	Bessel 1841
12	EGYPT	-130	110	-13		Helmert 1906
13	ED50	-87	-98	-121	European 1950	International 1924
14	ED79	-86	-98	-119	European 1979	International 1924
15	GUNSG	-403	684	41	G. Segara (Kalimantan - Indonesia)	Bessel 1841
16	GE049	84	-22	209	Geodetic Datum 1949 (New Zealand)	International 1924
10	GRB36	375	-111	431	Great Britain 1936 (Ordinance Survey)	Airy 1830
18	GUAM	-100	-248	259	Guam 1963 (Guam Island)	Clarke 1866
10	HAWAII	89	-279	-183	Hawaiian Hawaii (Old)	International 1924
20	KAUAI	45	-290	-172	Hawaiian Kauai (Old)	International 1924
20	MAUI	45 65	-290	-190	Hawaiian Maui (Old)	International 1924
22	OAHU	56	-284	-181	Hawaiian Oahu (Old)	International 1924
22	HERAT	-333	-204	114	Herat North (Afghanistan)	International 1924
24	HJORS	-333	46	-86	Hjorsey 1955 (Iceland)	International 1924
24	HONGK	-156	-271	-189		International 1924
26	HUTZU	-634	-549	-201	Hu-Tzu-Shan (Taiwan)	International 1924
20	INDIA	289	734	257	Indian (India, Nepal, Bangladesh)	Everest (EA)
28	IRE65	506	-122	611	Ireland 1965	Modified Airy
20	KERTA	-11	851	5	Kertau 1948 (West Malaysia and Singapore)	Everest (ED)
30	KANDA	-97	787	86	Kandawala (Sri Lanka)	Everest (EA)
31	LIBER	-90	40	88	Liberia 1964	Clarke 1880
32	LUZON	-133	-771	-51		Clarke 1866
33	MINDA	-133	-70	-72	Mindanoa Island	Clarke 1866
34	MERCH	-133	146	47		Clarke 1880
35	NAHR	-231	-196		Nahrwan (Saudi Arabia)	Clarke 1880
36	NAD83	-231	- 190	402		GRS-80
30	CANADA	-10	158	187	N. American Canada 1927	Clarke 1866
37	ALASKA	- 10 -5	135	187		Clarke 1866
38	NAD27	 -8	135	172	N. American Conus 1927	Clarke 1866
40	CARIBB	-o -7	152	178	N. American Coribbean	Clarke 1866
40	MEXICO	-7 -12	132	170	N. American Mexico	Clarke 1866
41	CAMER	-12	130	190	N. American Mexico	Clarke 1866
42	MINNA	-92	-93	194		Clarke 1880
	OMAN				Nigeria (Minna)	
44 45	PUERTO	-346 11	-1 72	224 -101	Oman Puerto Rica and Virgin Islands	Clarke 1880 Clarke 1866
	PULKIU		12	-101	r ucho rica anu virgin isidilus	CIDINE 1000
GPSCard Datum ID number	NAME	DX	DY	DZ	DATUM DESCRIPTION	ELLIPSOID

 Table 10
 Transformation Parameters (Local Geodetic to WGS-84)

46	QORNO	164	138	-189	Qornoq (South Greenland)	International 1924
47	ROME	-255	-65	9	Rome 1940 Sardinia Island	International 1924
48	CHUA	-134	229	-29	South American Chua Astro (Paraguay)	International 1924
49	SAM56	-288	175	-376	South American (Provisional 1956)	International 1924
50	SAM69	-57	1	-41	South American 1969	S. American 1969
51	CAMPO	-148	136	90	S. American Campo Inchauspe (Argentina)	International 1924
52	SACOR	-206	172	-6	South American Corrego Alegre (Brazil)	International 1924
53	YACAR	-155	171	37	South American Yacare (Uruguay)	International 1924
54	TANAN	-189	-242	-91	Tananarive Observatory 1925 (Madagascar)	International 1924
55	TIMBA	-689	691	-46	Timbalai (Brunei and East Malaysia) 1948	Everest (EB)
56	TOKYO	-128	481	664	Tokyo (Japan, Korea and Okinawa)	Bessel 1841
57	TRIST	-632	438	-609	Tristan Astro 1968 (Tristan du Cunha)	International 1924
58	VITI	51	391	-36	Viti Levu 1916 (Fiji Islands)	Clarke 1880
59	WAK60	101	52	-39	Wake-Eniwetok (Marshall Islands)	Hough 1960
60	WGS72	0	0	4.5	World Geodetic System - 72	WGS-72
61	WGS84	0	0	0	World Geodetic System - 84	WGS-84
62	ZANDE	-265	120	-358	Zanderidj (Surinam)	International 1924
63	USER	0	0	0	User Defined Datum Defaults	User *

* Default user datum is WGS 84.

* The POSA/B log reports the Datum used according to the "GPSCard Datum ID" column.

RBTA/B SATELLITE BROADCAST DATA: RAW BITS

This message contains the satellite broadcast data in raw bits before Forward Error Correction (FEC) decoding or any other processing. An individual message is sent for each PRN being tracked. For a given satellite, the message number increments by one each time a new message is generated. This data matches the SBTA/B data if the message numbers are equal. The data must be logged with the 'onnew' trigger activated to prevent loss of data.

RBTA

Structure:

\$RBTA week	seconds	prn	ch	tr-status	message	#	# o:	E bits	
raw bits	*xx [CR][L	F]							

Field #	Field type	Data Description	Example
1	\$RBTA	Log header	\$RBTA
2	week	GPS week number	883
3	seconds	GPS seconds into the week	413908.000
4	prn	PRN of satellite from which data originated	115
5	ch tr-status	Channel Tracking Status (see <i>Table 4, on Page 53</i>)	80812F14
6	message #	Message sequence number	119300
7	# of bits	Number of bits transmitted in the message. At present, always equals 256 bits.	256
8	raw bits	256 bits compressed into a 32 bytes. Hence, 64 hex characters are output.	30FB30FB30FB30F878DA62194000F18322931B 9EBDBC1CBC9324B68FBDAEBE8A
9	*хх	Checksum	*42
10	[CR][LF]	Sentence terminator	[CR][LF]

Example:

\$RBTA,883,413908.000,115,80812F14,119300,256,30FB30FB30FB30F878DA62194000F1832293 1B9EBDBC1CBC9324B68FBDAEBE8A*42[CR][LF]

RBTB

Format:	Message $ID = 52$
ronnat.	wiessage $ID = JZ$

Message byte count = 72

Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	Week number	4	integer	weeks	12
3	Seconds of week	8	double	seconds	16
4	PRN number	4	integer	1-999	24
5	Channel Tracking Status	4	integer	n/a	28
6	Message #	4	integer	n/a	32
7	# of Bits	4	integer	n/a	36
8	Raw Bits	32	char	n/a	40

RCCA RECEIVER CONFIGURATION

This log outputs a list of the <u>current</u> receiver command settings. Observing this log is a good way to monitor the receiver's configuration settings. If these messages are logged directly after powering up the receiver, they will contain the default configuration settings.

NOTE1: In addition to typical log data as described in this manual, there may be additional messages output by the receiver (see *Appendix C on Page 88*, for more on information messages).

NOTE2: Each line is followed by a carriage return ([CR][LF]).

RCCA

Example default:

```
$RCCA, COM1, 9600, N, 8, 1, N, OFF, ON*2B
$RCCA,COM1_DTR,HIGH*70
$RCCA,COM1_RTS,HIGH*67
$RCCA, ACCEPT, COM1, COMMANDS*5B
$RCCA, COM2, 9600, N, 8, 1, N, OFF, ON*28
$RCCA,COM2_DTR,HIGH*73
$RCCA,COM2 RTS,HIGH*64
$RCCA, ACCEPT, COM2, COMMANDS*58
$RCCA, UNDULATION, TABLE*56
$RCCA, DATUM, WGS84*15
$RCCA, USERDATUM, 6378137.000, 298.257223563, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.
              00*6A
$RCCA, SETNAV, DISABLE*5C
$RCCA, MAGVAR, 0.000*33
$RCCA, DYNAMICS, AIR*4F
$RCCA, UNASSIGNALL*64
$RCCA, UNLOCKOUTALL*20
$RCCA, RESETHEALTHALL*37
$RCCA, UNFIX*73
$RCCA,SETDGPSID,ALL*1D
$RCCA, RTCMRULE, 6CR*32
$RCCA,RTCM16T,*48
$RCCA,CSMOOTH,20.00,20.00*7E
$RCCA,ECUTOFF,5.00*40
$RCCA, FREQUENCY_OUT, DISABLE*12
$RCCA, EXTERNALCLOCK, OCXO*5D
$RCCA, CLOCKADJUST, ENABLE*47
$RCCA, SETTIMESYNC, DISABLE*17
$RCCA,SETL10FFSET,0.000000*3F
$RCCA, MESSAGES, COM1, ON*56
$RCCA, MESSAGES, COM2, OFF*1B
$RCCA, MESSAGES, CONSOLE, ON*71
$RCCA, DGPSTIMEOUT, 60.00, 120.00*51
$RCCA, POSAVE, DISABLE*59
$RCCA, CONFIG, G10W2*3A
$RCCA, DIFF_PROTOCOL, DISABLED*47
$RCCA, UNLOGALL*21
```


REPA/B RAW EPHEMERIS

This log contains the raw binary information for sub-frames one, two and three from the satellite with the parity information removed. Each sub-frame is 240 bits long (10 words – 24 bits each) and the log contains a total 720 bits (90 bytes) of information (240 bits x 3 sub-frames). This information is preceded by the PRN number of the satellite from which it originated. This message will not be generated unless all 10 words from all 3 frames have passed parity.

An individual message is sent for each PRN being tracked. For a given satellite, the message number increments by one each time a new message is generated.

Ephemeris data whose time of ephemeris is older than six hours will not be shown.

REPA

Structure:

\$REPA prn subframe1 Subfr	ame2 subframe3 *xx [CR][LF]
----------------------------	-----------------------------

Field #	Field type	Data Description	Example
1	\$REPA	Log header	\$REPA
2	prn	PRN of satellite from which data originated	14
3	subframe1	Sub-frame 1 of ephemeris data (60 hex characters)	8B09DC17B9079DD7007D5DE404A9B2D
			04CF671C6036612560000021804FD
4	subframe2	Sub-frame 2 of ephemeris data (60 hex characters)	8B09DC17B98A66FF713092F12B359D
			FF7A0254088E1656A10BE2FF125655
5	subframe3	Sub-frame 3 of ephemeris data (60 hex characters)	8B09DC17B78F0027192056EAFFDF2724C
			9FE159675A8B468FFA8D066F743
6	*хх	Checksum	*57
7	[CR][LF]	Sentence terminator	[CR][LF]

Example:

\$REPA,14,8B09DC17B9079DD7007D5DE404A9B2D04CF671C6036612560000021804FD, 8B09DC17B98A66FF713092F12B359DFF7A0254088E1656A10BE2FF125655, 8B09DC17B78F0027192056EAFFDF2724C9FE159675A8B468FFA8D066F743*57[CR][LF]

REPB

Format:	Message $ID = 14$	Message byte count $= 108$	
---------	-------------------	----------------------------	--

Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	PRN number	4	integer	1-32	12
3-4-5	Ephemeris data	90	char	data [90]	16
	Filler bytes	2	char		106
6	Reserved. Set to 0.				

RGEA/B/D CHANNEL RANGE MEASUREMENTS

RGEA/B contains the channel range measurements for the currently observed satellites i.e. those that are in tracking state 4. These logs contain all of the extended tracking status bits. The RGED message is a compressed form of the RGEB message.

It is important to ensure that the receiver clock has been set and can be monitored by the bits in the rec-status field. Large jumps in range as well as Accumulated Doppler Range (ADR) will occur as the clock is being adjusted. If the ADR measurement is being used in precise phase processing, it is important not to use the ADR if the "parity known" flag in the tr-status field is not set as there may exist a half (1/2) cycle ambiguity on the measurement. The tracking error estimate of the pseudorange and carrier phase (ADR) is the thermal noise of the receiver tracking loops only. It does not account for possible multipath errors or atmospheric delays.

As shown in *Table 4* for the Channel Tracking Status word, bit 19 shows the observation is for L1. This is to aid in parsing the data.

RGEA

Structure:

\$RGE	A week secon	lds # obs rec	-status		
prn	psr psr std	adr adr std	dopp S/No	locktime	ch tr-status
:					
prn	psr psr std	adr adr std	dopp S/No	locktime	ch tr-status
*xx	[CR][LF]				

Field #	Field type	Data Description	Example
1	\$RGEA	Log header	\$RGEA
2	week	GPS week number	845
3	seconds	GPS seconds into the week (receiver time, not corrected for clock error)	511089.00
4	# obs	Number of satellite observations with information to follow	14
5	rec-status	Receiver self-test status (see Table 11 on Page 69)	000B20FF
6	prn	Satellite PRN number (1-32) of range measurement	4
7	psr	Pseudorange measurement (m)	23907330.296
8	psr std	Pseudorange measurement standard deviation (m)	0.119
9	adr	Carrier phase, in cycles (accumulated Doppler range)	-125633783.992
10	adr std	Estimated carrier phase standard deviation (cycles)	0.010
11	dopp	Instantaneous carrier Doppler frequency (Hz)	3714.037
12	C/N ₀	Signal to noise density ratio C/N ₀ = 10[log ₁₀ (S/N ₀)] (dB-Hz)	44.8
13	locktime	Number of seconds of continuous tracking (no cycle slipping)	1928.850
14	ch tr-status	Channel tracking status: hexadecimal number indicating phase lock, channel number and channel state as shown in <i>Table 4, Page 53</i>	82E04
15-23		Next observation	
		Next observation	
variable	*XX	Checksum	*30
variable	[CR][LF]	Sentence terminator	[CR][LF]

Example (carriage returns have been added between observations for clarity):

```
$RGEA,845,511089.00,14,000B20FF
4,23907330.296,0.119,-125633783.992,0.010,3714.037,44.8,1928.850,82E04,
4,23907329.623,1.648,-97896180.284,0.013,2894.285,35.0,1746.760,582E0B,
2,21298444.942,0.040,-111954153.747,0.006,-1734.838,54.2,17466.670,82E14,
2,21298444.466,0.637,-87236867.557,0.006,-1351.607,43.3,17557.260,582E1B,
9,22048754.383,0.063,-115874135.450,0.006,2174.006,50.4,5489.100,82E24,
9,22048754.424,0.641,-90291443.071,0.006,1694.238,43.2,5489.100,582E2B,
15, 23191384.847, 0.261, -121887295.980, 0.017, -2069.744, 38.0, 9924.740, 82E34, 38.0, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 9924, 
15,23191384.663,0.596,-94977002.452,0.010,-1612.587,43.8,9881.830,582E3B,
26,24063897.737,0.199,-126477739.189,0.014,-2654.682,40.3,12821.640,82E54,
26,24063898.913,1.043,-98553986.239,0.013,-2068.380,39.0,12793.280,582E5B,
7,20213352.139,0.037,-106237901.461,0.005,439.943,55.0,10313.040,82E74,
7,20213351.196,0.498,-82782498.454,0.007,343.020,45.4,9977.400,582E7B,
27,24393726.829,0.123,-128229016.323,0.012,-4047.338,44.5,22354.119,82E94,
27,24393728.057,1.805,-99918535.513,0.013,-3153.559,34.2,22301.830,582E9B
*30[CR][LF]
```

RGEB

Format:	Message $ID = 32$	Message byte count = $32 + (obs \ x \ 44)$
I OIIIIat.		

Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	Week number	4	integer	weeks	12
3	Seconds of week	8	double	S	16
4	Number of observations (obs)	4	integer		24
5	Receiver self-test status (see Table 11)	4	integer		28
6	PRN	4	integer		32
7	Pseudorange	8	double	m	36
8	StdDev pseudorange	4	float	m	44
9	Carrier phase – accumulated Doppler range	8	double	cycles	48
10	StdDev – accumulated Doppler range	4	float	cycles	56
11	Doppler frequency	4	float	Hz	60
12	C/N ₀	4	float	dB-Hz	64
13	Locktime	4	float	S	68
14	Channel Tracking status	4	integer		72
15	Next PRN offset = 32 + (obs# x 44) where ob	os# = 0 to obs			

RGED

Format:

Message ID = 65

Message byte count = $24 + (obs \ x \ 20)$

	Bytes	Format	Units	Offset
	3	char		0
	1	char		3
	4	integer		4
	4	integer	bytes	8
bs)	2	integer		12
	2	integer	weeks	14
	4	integer	S	16
ee Table	4	integer		20
	20	integer	Only bits 0 – 23 are represented	24
e	obs# = 0 to	20 obs# = 0 to obs	5	

N7	N 6	N 5	N	4	N 3	N 2	N 1	N	0	<- <-	Nibble Number		
2	27 26 25 24	4 23 22 21 2	20 19 18	17 16	15 14 13 12 1	10 9 8	3 7 6 5	4 3 2	1 (Bit	Description	Range Values	Hex Value
										Isb=0	ANTENNA	1=good, 0=bad	00000001
									1 -	1	L1PLL	1=good, 0=bad	0000002
										2	RAM	1=good, 0=bad	0000004
										3	SOFTWAREINTEGRITY	1=good, 0=bad	0000008
							1111			4	MINOS	1=good, 0=bad	00000010
										5	L1AGC	1=good, 0=bad	00000020
										6	COM 1	1=good, 0=bad	00000040
										7	COM 2	1=good, 0=bad	00000080
										8	WEEK	1=not set, 0=set	00000100
										9	COARSETIME	1=not set, 0=set	00000200
										10	FINETIME	1=not set, 0=set	00000400
										11	L1JAMMER	1=present,0=normal	00000800
										12	BUFFER COM 1	1=overrun, 0=normal	00001000
										13	BUFFER COM 2	1=overrun, 0=normal	00002000
										14	BUFFER CONSOLE	1=overrun,0=normal	00004000
										15	RANGE BUFFER OVERLOAD	1=overload, 0=normal	0008000
											Reserved		
										17			
										18			
										19			
		L								20			
										21			
										22			
								_		23			
										24			
										25			
		_		_			_	_		26			
										27 28-31			
										28-31			

GPSCard examples:

MEDLL: All OK = 0000 0000 0000 0000 0000 0000 1111 1111 (binary) = 000000FF (hexadecimal)

Notes:

- 1. Bit 3: Refers to the periodic code check.
- 2. Bits 2, 4, 6, 7: these are set only once when the GPSCard is first powered up. All other bits are set by internal test processes periodically.
- 3. Bits 12-15: Flag is reset to 0 five minutes after the last overrun/overload condition has occurred.
- 4. Bits 17-20: These bits are always set to 0 for MEDLL

Receiver Status – Detailed Bit Descriptions of Self-Test Word

What follows is a detailed description of each bit setting in the Receiver Self-Test Status word (see *Table 11 on Page 69*). Additional information is also included in *Table 13, on Page 72*.

The following information is output in the receiver status bits:

Bit #	Range Value	Name	Description
0	1 = good 0 = bad	Antenna	This is only verified if the receiver is supplying power to the antenna. For all EGNOS receiver models, the antenna will not be powered so this bit is not used.
1	1 = good 0 = bad	L1 PLL	Verifies that the L1 VCO is locked and sets the bit to good if the test passes.
2	1 = good 0 = bad	RAM	RAM is tested by the assumption that if the code is running and we get to set the RAM good bit, then the RAM itself must be good. The bit is never set to bad in the software. If the RAM is determined to be bad during the boot sequence, the software is not run and the LED on the front panel will be flashed at 4Hz. No additional error message is output when this test fails.
3	1 = good 0 = bad	Software Integrity	This bit will indicate that the authorization code has successfully been used to check the integrity of the software loaded on the card. On success, the bit is set to good. On failure, the receiver will be reset in an attempt to alleviate the problem after outputting a fatal !ERRA message of type 1, see <i>Page 88</i> . If the problem persists, attempt to reload the card. In the event that reloading the receiver does not fix the problem, the unit will need to be replaced.
4	1 = good 0 = bad	DSP	This function performs a readback of the MINOS Master Control Register using alternating test patterns for both master and slave MINOS on the board and sets the bit to good if the test passes. A failure indicates that there is a problem with the MINOS and the unit should be replaced. No additional error message is output when this test fails.
5	1 = good 0 = bad	L1 AGC	Verifies that the L1 AGC is currently not being adjusted and is properly calibrated and sets the bit to good if the test passes. This is only done on the MEDLL Master and OEM3 cards, as there is no AGC on the MEDLL Slave cards. Failure of this test could be the result of various possibilities such as: bad antenna LNA, excessive loss in the antenna cable, faulty RF down-converter, or a pulsating or high power jamming signal causing interference. If this bit is continuously set to clear, you cannot identify an external cause for the failed test.
6	1 = good 0 = bad	COM1	The DUART is tested using an internal loopback verifying the transmit and receive shift registers, DTR/DSR, RTS/CTS, and RI/DCD lines and sets the bit to good if the test passes. If the test fails, there will most likely be no output from the receiver since the COM port has failed. In the event that the COM port has failed but there are still logs being output, there may be additional problems with the ASIC (since the DUART is integrated into the MINOS) and the unit should be replaced.
7	1 = good 0 = bad	COM2	This test is identical to the COM1 test.
8	1 = not set 0 = set	WEEK	The week is initialised to not set at start-up. Once the week has been determined (by the decoding of navigation data) the bit is set to 0. Once the week has been determined, it will remain set until a receiver reset occurs. If this bit is not set to zero, then the observation data, pseudorange, carrier phase, and Doppler measurements may jump as the clock adjusts itself.
9	1 = not set 0 = set	Coarse Time	The coarse time is initialised to not set at start-up. Once the coarse time has been determined (by decoding navigation data) the bit is set to 0. Once coarse time has been determined, it will remain set until a receiver reset occurs. If this bit is not set to zero, then the observation data, pseudorange, carrier phase, and Doppler measurements may jump as the clock adjusts itself.

Table 12Receiver Self-Test Status Bits

Bit #	Range Value	Name	Description
10	1 = not set 0 = set	Fine Time	The fine time is initialised to not set at start-up. Once the fine time has been determined (by calculating a position/time solution) the bit is set to 0. Since CLOCKADJUST is disabled, once the fine time has been determined it will remain set until a receiver reset occurs. If this bit is not set to zero, then the observation data, pseudorange, carrier phase, and Doppler measurements may jump as the clock adjusts itself.
11	1 = present 0 = normal	L1 Jammer	This test checks to see if the L1 AGC has detected a jammer and sets the bit to indicate its presence. You should monitor this bit, and if set to 1, do your best to remedy the cause of the jamming signal. Nearby transmitters or other electronic equipment could be the cause of interference; you may find it necessary to relocate your antenna position if the problem persists.
12	1 = overrun 0 = normal	Buffer COM1	The COM1 UART Tx and Rx status lines are checked and if either has experienced an overrun, this status bit is set. If set, it will remain in that state for 2 seconds beyond the last overrun. Over- run is caused by requesting more log data than can be taken from the RIMS-C receiver because of baud rate limitations or slow communications equipment. If this happens, the new data attempting to be loaded into the buffer will be discarded. The receiver will not load a partial data record into an output buffer. The flag resets to zero, 2 seconds after the last overrun occurred.
13	1 = overrun 0 = normal	Buffer COM2	The COM2 UART Tx and Rx status lines are checked and if either has experienced an overrun, this status bit is set. If set, it will remain in that state for 2 seconds beyond the last overrun. Over- run is caused by requesting more log data than can be taken from the RIMS-C receiver because of baud rate limitations or slow communications equipment. If this happens, the new data attempting to be loaded into the buffer will be discarded. The receiver will not load a partial data record into an output buffer. The flag resets to zero, 2 seconds after the last overrun occurred.
14	1 = overrun 0 = normal	Buffer Console	The console Tx and Rx status lines are checked and if either has experienced an overrun, this status bit is set. If set, it will remain in that state for 2 seconds beyond the last overrun. Over-run is caused by requesting more log data than can be taken from the RIMS-C receiver because of baud rate limitations or slow communications equipment. If this happens, the new data attempting to be loaded into the buffer will be discarded. The receiver will not load a partial data record into an output buffer. The flag resets to zero, 2 seconds after the last overrun occurred.
15	1 = overrun 0 = normal	Range Buffer Overrun ¹³	Verifies that there is space in a circular RAM buffer for range measurements and sets the bit to good if the test passes. When the buffer is overloaded (there are too many successive range measurements for the CPU to service) the bit is set to overrun. The bit will remain set for 2 seconds after the last overrun and then the bit will be cleared. Requesting an excessive amount of information from the receiver may cause this. If this condition is occurring, limit redundant data logging or reconfigure the receiver to output binary data output formats, or both. You should attempt to tune the logging requirements to keep the idle time above 20% for best operation. If the average idle CPU drops below 10% for prolonged periods of time (2-5 seconds), critical errors may result in internal data loss and the over-load bit will be set to 1. You can monitor the range buffer CPU idle time by using the RVSA log message. The flag is reset 2 seconds after the last overload occurred.
16-31	Reserved		

¹³ As the amount of buffer space becomes limited, the software will begin to slow down the position calculation rate. If the buffer becomes further limited, the software will begin to skip range measurement processing. Priority processing goes to the tracking loops.

Table 13 Additional Information About Portable MEDLL Receiver Self-Test Status Word

The bits have been place into 4 categories. They are:

- 1. Not Used in Portable MEDLL Rx: The user can ignore this bit.
- Diagnostics: This bit does not need to be continually monitored by the user but can provide useful information if a problem is detected.
- 3. Checked at Start-up: This test is done at power-up of the receiver. This should show 'valid' status before continuing.
- 4. **Continuous Monitoring:** This bit should be continually monitored by the user. It either indicates a problem or a change of status.

Bit	Description	Category	Comments
0	ANTENNA	Not Used In Portable MEDLL Rx	No antenna power provided by the receiver.
1	L1 PLL	Diagnostics	Can be used for diagnostics if a problem is detected.
2	RAM	Checked at Start-up	Always 1 on start-up. A 0 will remain unseen; the computer is not working.
3	SOFTWARE INTEGRITY	Continuous Monitoring	ROM CRC failure.
4	MINOS	Checked at Start-up	
5	L1 AGC	Diagnostics	Indicates the AGC has been adjusted. If there is a problem it will show up in the C/No and ranges residuals.
6	COM 1	Checked at Start-up	
7	COM 2	Checked at Start-up	
8	WEEK	Continuous Monitoring	
9	COARSETIME	Continuous Monitoring	
10	FINETIME	Continuous Monitoring	
11	L1 JAMMER	Continuous Monitoring	Indicates there may be a jammer present on L1.
12	BUFFER COM1	Continuous Monitoring	
13	BUFFER COM2	Continuous Monitoring	
14	BUFFER CONSOLE	Continuous Monitoring	
15	BUFFER OVERLOAD	Continuous Monitoring	
16-31	Reserved		

Data	Bits from first to last	Length (bits)	Format	Scale Factor
PRN 14 15	05	6	integer	1
C/N ₀ ¹⁶	610	5	integer	(20 + n) dB-Hz
Lock time 17	1131	21	integer	1/32 s
ADR 18	3263	32	integer 2's compliment	1/256 cycles
Doppler Frequency	6895	28	integer 2's compliment	1/256 Hz
Pseudorange	6467msn; 96127 lsw	36	integer 2's compliment	1/128 m
StdDev – ADR	128131	4	integer	(n + 1) / 512 cycles
StdDev – pseudorange	132135	4		(see footnote) 19
Channel tracking status ²⁰	136159	24	integer	see Table 4, Page 53

Table 14 Range Record Format (RGED Only)

16 C/N_0 is constrained to a value between 20 – 51 dB-Hz. Thus, if it is reported that $C/N_0 = 20$ dB-Hz, the actual value could be less. Likewise, if it is reported that $C/N_0 = 51$ dB-Hz, the true value could be greater.

18 ADR (Accumulated Doppler Range) is calculated as follows:

ADR_ROLLS = (-RGED_PSR / WAVELENGTH - RGED_ADR)/MAX_VALUE Round to the closest integer

IF (ADR_ROLLS < -0.5)

 $ADR_ROLLS = ADR_ROLSS - 0.5$ ELSE $ADR_ROLLS = ADR_ROLLS + 0.5$ At this point integerise ADR_ROLLS CORRECTED_ADR = RGED_ADR - (MAX_VALUE * ADR_ROLLS) where: ADR has units of cycles WAVELENGTH = 0.1902936727984 for L1 MAX_VALUE = 8388608

19

Code	RGED
0	0.00 to 0.050
1	0.051 to 0.075
2	0.076 to 0.113
3	0.114 to 0.169
4	0.170 to 0.253
5	0.254 to 0.380
6	0.381 to 0.570
7	0.571 to 0.854
8	0.855 to 1.281
9	1.282 to 2.375
10	2.376 to 4.750
11	4.751 to 9.500
12	9.501 to 19.000
13	19.001 to 38.000
14	38.001 to 76.000
15	76.001 to 152.000

20 Only bits 0-23 are represented in the RGED log.

¹⁴ Only PRNs 1-63 are reported correctly. (Note: while there are only 32 PRNs in the basic GPS scheme, situations exist which require the use of additional PRNs.)

¹⁵ The PRN offsets for WAAS have been mapped to the same range as GPS, i.e. 1-19, while the PRN offsets for GLONASS are 1-29.

¹⁷ Lock time rolls over after 2,097,151 seconds.

RVSA/B RECEIVER STATUS

This log conveys various status parameters of the receiver. If the receiver is a multiple-GPSCard unit with a master card (e.g. MEDLL), certain parameters are repeated for each individual GPSCard. If the receiver is composed of only one GPSCard, then only the parameters for that unit are listed.

Note that the number of satellite channels represents the maximum number of channels reporting information in logs such as ETSA/B and RGEA/B/D.

RVSA

Structure:

\$RVSA week seconds sat_chan sig_chan num reserved	f
idle status	
idle status	
*xx [CR][LF]	

Field #	Field type	Data Description	Example
1	\$RVSA	Log header	\$RVSA
2	week	GPS week number	847
3	seconds	GPS seconds into the week.	318923.00
4	sat_chan	Number of satellite channels	12
5	sig_chan	Number of signal channels	24
6	num	Number of cards	1
7	Reserved	Reserved. Set to 0.	
8	idle	First GPSCard: CPU idle time. Averaged over a 1 second period (percent).	22
9	status	First GPSCard: Self-test status (see Table 11 on Page 69)	000B00FF
10		Next GPSCard: CPU idle time & self-test status	
		Next GPSCard: CPU idle time & self-test status	
variable	*XX	Checksum	*42
variable	[CR][LF]	Sentence terminator	[CR][LF]

MEDLL Example:

 $\label{eq:rvsa} $ RVSA, 77, 162465.00, 16, 16, 8, 0, 53.00, 42000 FF, 66.00, 42000 FF, 68.00, 42000 FF, 77.00, 42000 FF, 69.00, 42000 FF, 87.00, 42000 FF, 89.00, 42000 FF, 88.00, 42000 FF, 88.00, 42000 FF, 80.00, 4200 FF, 80.00, 4200 FF, 80.00, 4200 FF, 80.00, 4200 FF, 80.00, 42000 FF, 80.00, 40.00, 40.00, 40.00, 40.00, 40.00, 40.00, 40.00, 40.00, 40.00, 40.0$

RVSB

Format: Message ID = 56

Message byte count = 28 + (8 x number of cards)

Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	Week number	4	integer	weeks	12
3	Seconds of week	8	double	S	16
4	Number of satellite	1	char		24
	channels				
5	Number of signal	1	char		25
	channels				
6	Number of cards	1	char		26
7	Reserved. Set to 0.	1	byte		27
8	CPU idle time	4	float	percent	28
9	Self-test status	4	integer		32
8 & 9 are repeated for each card	Next Card offset = 28 + (8 x card#) where card# = 0 – (number of cards – 1)				

SATA/B SATELLITE SPECIFIC DATA

This log provides satellite specific data for satellites actually being tracked. The record length is variable and depends on the number of satellites.

Each satellite being tracked has a reject code indicating whether it is used in the solution, or the reason for its rejection from the solution. The reject value of 0 indicates the observation is being used in the position solution. Values of 1 through 13 indicate the observation has been rejected for the reasons specified in *Table 7 on Page 54*.

SATA

Structure:

\$SAT	A week S	Seconds so	l status	# obs		
prn	azimuth	elevation	residual	reject	code	
:						
prn	azimuth	elevation	residual	reject	code	*xx [CR][LF]

Field #	Field type	Data Description	Example
1	\$SATA	Log header	\$SATA
2	week	GPS week number	637
3	seconds	GPS seconds into the week	513902.00
4	sol status	Solution status as listed in Table 3, Page 53	0
5	# obs	Number of satellite observations with information to follow	7
6	prn	Satellite PRN number (1-32)	18
7	azimuth	Satellite azimuth from user position with respect to True North, in degrees	168.92
8	elevation	Satellite elevation from user position with respect to the horizon, in degrees	5.52
9	residual	Satellite range residual from position solution for each satellite, in metres	9.582
10	reject code	Indicates that the range is being used in the solution (code 0) or that it was rejected (code 1- 13), as shown in <i>Table 7 on Page 54</i>	0
11		Next PRN	
variable	*хх	Checksum	*1F
variable	[CR][LF]	Sentence terminator	[CR][LF]

Example:

\$SATA,637,513902.00,0,7,18,168.92,5.52,9.582,0,6,308.12,55.48,0.737,0, 15,110.36,5.87,16.010,0,11,49.63,40.29,-0.391,0, 2,250.05,58.89,-12.153,0,16,258.55,8.19,-20.237,0, 19,118.10,49.46,-14.803,0*1F[CR][LF]

SATB

Format: Me

Message ID = 12

Message byte count = 32 + (obs*32)

Field #	Data	Bytes	Format	Units	Offset		
1	Sync	3	char		0		
(header)	Checksum	1	char		3		
	Message ID	4	integer		4		
	Message byte count	4	integer	bytes	8		
2	Week number	4	integer	weeks	12		
3	Seconds of week	8	double	seconds	16		
4	Solution status	4	integer		24		
5	Number of observations (obs)	4	integer		28		
6	PRN	4	integer		32		
7	Azimuth	8	double	degrees	36		
8	Elevation	8	double	degrees	44		
9	Residual	8	double	metres	52		
10	Reject code	4	integer		60		
11	Next PRN offset = 32 + (obs# * 32)	Next PRN offset = 32 + (obs# * 32) where obs# varies from 0 to (obs-1)					

SBTA/B SATELLITE BROADCAST DATA: RAW SYMBOLS

This message contains the satellite broadcast data in raw symbols before FEC decoding or any other processing. An individual message is sent for each PRN being tracked. For a given satellite, the message number increments by one each time a new message is generated. This data matches the RBTA/B data if the message numbers are equal. The data must be logged with the 'onnew' trigger activated to prevent loss of data.

SBTA

Structure:

\$SBTA week	seconds	prn	cstatus	message	#	# of	symbols
raw symbols	*xx [CR][LF]]				

Field #	Field type		Example
1	\$SBTA	Log header	\$SBTA
2	week	GPS week number	883
3	seconds	GPS seconds into the week	413908.000
4	prn	PRN of satellite from which data originated	120
5	cstatus	Channel Tracking Status	80812F14
6	message #	Message sequence number	119300
7	# of symbols	Number of symbols transmitted in the message. At present, always equals 256 bits.	256
8	raw symbols	256 symbols compressed into a 128 bytes, i.e. 4 bits/symbol. Hence, 256 hex characters are output. If FEC decoding is enabled, soft symbols are output with values ranging from -3 to 3. Otherwise 1's and 0's are output.	EE33EEE53333E33EE33EEE3333EE33EE333EEE3333 3E33EE33EEE533333EEE5333EEE33E533EE53EE33EE EEE33EE3E3EEEEEEEE
9	*хх	Checksum	*4C
10	[CR][LF]	Sentence terminator	[CR][LF]

Example:

SBTB

Format:	Message ID = 53	Message byte count = 168
	0	0,

Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	Week number	4	integer	weeks	12
3	Seconds of week	8	double	seconds	16
4	PRN number	4	integer	1-999	24
5	Channel Status	4	integer	n/a	28
6	Message #	4	integer	n/a	32
7	# of Symbols	4	integer	n/a	36
8	Raw Symbols	128	char	n/a	40

TM1A/B TIME OF 1PPS

This log provides the time of the GPSCard 1PPS in GPS week number and seconds into the week. It also includes the receiver clock offset, the standard deviation of the receiver clock offset and clock model status. This log will output at a maximum rate of 1 Hz.

TM1A

Structure:

\$TM1A week seconds	offset offset std	utc offset cm status	*xx [CR][LF]
---------------------	-------------------	----------------------	--------------

Field #	Field type	Data Description	Example
1	\$TM1A	Log header	\$TM1A
2	week	GPS week number	794
3	seconds	GPS seconds into the week at the epoch coincident with the 1PPS output strobe (receiver time)	414634.999999966
4	offset	Receiver clock offset, in seconds. A positive offset implies that the receiver clock is ahead of GPS Time. To derive GPS time, use the following formula: GPS time = receiver time – (offset)	-0.00000078
5	offset std	Standard deviation of receiver clock offset, in seconds	0.00000021
6	utc offset	This field represents the offset of GPS time from UTC time, computed using almanac parameters. To reconstruct UTC time, algebraically subtract this correction from field 3 above (GPS seconds):	-9.999999998
		UTC time = GPS time – (utc offset)	
7	cm status	Receiver Clock Model Status where 0 is valid and values from -20 to -1 imply that the model is in the process of stabilization	0
8	*хх	Checksum	*57
9	[CR][LF]	Sentence terminator	[CR][LF]

Example:

\$TM1A,794,414634.999999966,-0.000000078,0.00000021,-9.999999998,0*57[CR][LF]

TM1B

Format: Message ID = 03 Message byte count = 52

Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	Week number	4	integer	weeks	12
3	Seconds of week	8	double	seconds	16
4	Clock offset	8	double	seconds	24
5	StdDev clock offset	8	double	seconds	32
6	UTC offset	8	double	seconds	40
7	Clock model status	4	integer	0 = good, -1 to -20 = bad	48

UTCA/B DECODED ALMANAC - UTC TIME PARAMETERS

The UTC time parameters (UTCA/B) are provided following the last almanac records when an ALMA/B message has been logged. The UTCA/B message cannot be logged individually or independently of the ALMA/B message.

For more information on Almanac data, refer to the GPS SPS Signal Specification.

UTCA

Structure:

\$UTCA	pct plot	data-ref	wk#-utc	wk#-lset	delta-time	lsop	day #-lset
*xx	CR][LF]						

Field #	Field type		Example
1	\$UTCA	Log header	\$UTCA
2	pct	Polynomial constant term, seconds	-2.235174179077148E-008
3	p1ot	Polynomial 1st order term, seconds/second	-1.243449787580175E-014
4	data-ref	UTC data reference time, seconds	32768
5	wk #-utc	Week number of UTC reference, weeks	745
6	wk #-lset	Week number for leap sec effect time, weeks	755
7	delta-time	Delta time due to leap sec, seconds	9
8	lsop	For use when leap sec on past, seconds	10
9	day #-lset	Day number for leap sec effect time, days	5
10	*XX	Checksum	*37
11	[CR][LF]	Sentence terminator	[CR][LF]

Example:

\$UTCA,-2.235174179077148E-008,-1.243449787580175E-014,32768,745,755,9,10,5*37
[CR][LF]

UTCB

Format: Message ID = 17 Message byte count = 52

Field #	Field Type	Bytes		Units	
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	Polynomial constant term	8	double	seconds	12
3	Polynomial 1st order term	8	double	seconds/second	20
4	UTC data reference time	4	integer	seconds	28
5	Week number UTC reference	4	integer	weeks	32
6	Week number for leap sec effect time	4	integer	weeks	36
7	Delta time due to leap sec	4	integer	seconds	40
8	For use when leap sec on past	4	integer	seconds	44
9	Day number for leap sec effect time	4	integer	days	48

WBCA/B WIDE BAND CARRIER RANGE CORRECTION

This message contains the wide band carrier range correction data. A correction is generated for each PRN being tracked and these are grouped together into a single log. Internally, the correction for each satellite is updated asynchronously at a 1 Hz rate. Therefore, logging this message at a rate higher than 1 Hz will result in duplicate data being output. Each carrier range correction is statistically independent and is derived from the previous 1 second of data.

WBCA

Structure:

Field	#	Field typ	be			Data D	escriptio	n		Example
prn	ch	tr-status	tr-BW	wide	band	carrier	range	correction	*xx	[CR][LF]
:										
prn	ch	tr-status	tr-BW	wide	band	carrier	range	correction		
\$WBC	Aw	eek secon	ds # o	bs						

Field #	Field type	Data Description	Example
1	\$WRCA	Log header	\$WBCA
2	week	GPS week number	637
3	seconds	GPS seconds into the week	513902.00
4	# obs	Number of satellite observations with information to follow:	7
5	prn	Satellite PRN number	18
6	ch tr-status	Channel Tracking Status: Hexadecimal number indicating phase lock, channel number and channel state as shown in <i>Table 4</i>	E04
7	tr-BW	PLL tracking loop bandwidth in Hz	15.000
8	wide band carrier correction	Wide band carrier range correction in cycles	0.00123
9		Next observation	
Variable	*ХХ	Checksum	*1F
Variable	[CR][LF]	Sentence terminator	[CR][LF]

WBCB

Format: Me

Message ID = 97

Message byte count = 28 + (obs*16)

Field #	Data	Bytes	Format	Units	Offset		
1	Sync	3	char		0		
(header)	Checksum	1	char		3		
	Message ID	4	integer		4		
	Message byte count	4	integer	bytes	8		
2	Week number	4	integer	weeks	12		
3	Seconds of week	8	double	seconds	16		
4	Number of observations (obs)	4	integer		24		
5	PRN	4	integer		28		
6	Channel Tracking Status, see <i>Table 4, on Page 53</i>	4	-	-	32		
7	PLL tracking loop bandwidth	4	float	Hz	36		
8	Wide Band Range Carrier Correction	4	float	cycles	40		
9	Next observation offset = 28 + (obs#*16) where obs# = 0 to (obs – 1)						

WRCA/B WIDE BAND CODE RANGE CORRECTION

This message contains the wide band code range correction data. A correction is generated for each PRN being tracked and these are grouped together into a single log. Internally, the correction for each satellite is updated asynchronously at a

1 Hz rate. Therefore, logging this message at a rate higher than 1 Hz will result in duplicate data being output. Each code range correction is statistically independent and is derived from the previous 1 second of data.

WRCA

Structure:

\$WRC2	A week second	ds # obs	s
prn	ch tr-status	tr-BW	wide band code range correction
:			
prn	ch tr-status	tr-BW	wide band code range correction *xx [CR][LF]

Field #	Field type	Data Description	Example
1	\$WRCA	Log header	\$WRCA
2	week	GPS week number	637
3	seconds	GPS seconds into the week	513902.00
4	# obs	Number of satellite observations with information to follow:	7
5	prn	Satellite PRN number	18
6	ch tr-status	Channel Tracking Status: Hexadecimal number indicating phase lock, channel number and channel state as shown in <i>Table 4</i>	E04
7	tr-BW	DLL tracking loop bandwidth in Hz	0.050
8	wide band range correction	Wide band code range correction in metres	1.323
9		Next PRN	
Variable	*ХХ	Checksum	*1F
Variable	[CR][LF]	Sentence terminator	[CR][LF]

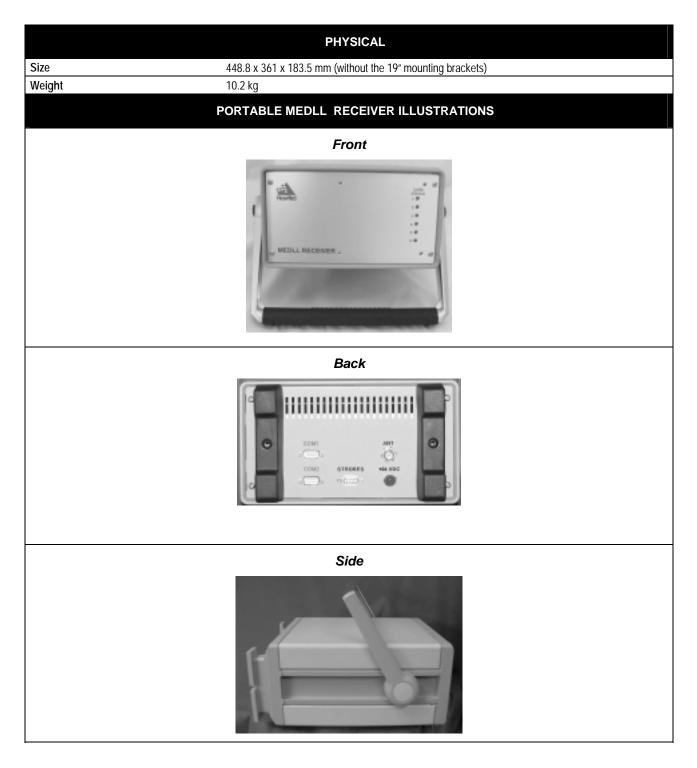
Example:

\$WRCA, 637,513902.00,7,18,E04,0.050,1.323,

```
*1F[CR][LF]
```

WRCB

Format: Message ID = 67


D = 6 / N

Message byte count = 28 + (obs*16)

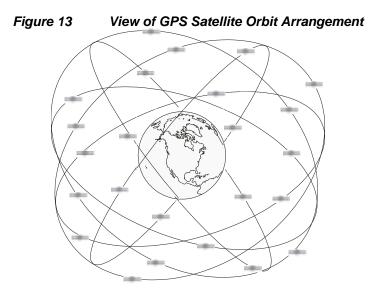
Field #	Data	Bytes	Format	Units	Offset
1	Sync	3	char		0
(header)	Checksum	1	char		3
	Message ID	4	integer		4
	Message byte count	4	integer	bytes	8
2	Week number	4	integer	weeks	12
3	Seconds of week	8	double	seconds	16
4	Number of observations (obs)	4	integer		24
5	PRN	4	integer		28
6	Channel Tracking Status	4	-	-	32
7	DLL tracking loop bandwidth	4	float	Hz	36
8	Wide Band Code Range Correction	4	float	metres	40
9	Next PRN offset = 28 + (obs*16)				

A PORTABLE MEDLL RECEIVER - TECHNICAL SPECIFICATIONS

		ENVIRONMENTAL
Operating Temperature		-25° C to +65° C
Storage Temperature		-40° C to +85° C
Humidity		10-80%
Altitude		3,000 metres
_		[May operate above 3,000 m in a controlled environment, however is not certified as such.]
		POWER INPUT
Connector		24V power jack
Voltage		22-30 VDC
Current		maximum 1.5 A continuous; peak 3 A
Portal	ble MEDLL RECI	EIVER PERFORMANCE (Subject To GPS System Characteristics)
Frequency		L1(1575.42 MHz)
Code tracked		GPS L1-C/A Code, GEO L1-C/A Code, GPS SVN (PRN 1-32), and GEO SVN (PRN 120-138)
Satellite Tracking	MEDLL	12 L1-C/A
Channels		Or
		10 L1-C/A, 2 L1-C/A GEO
Position Accuracy Stand	l-alone	5 metres CEP (SA off), GDOP < 2
Time Accuracy (relative	<u>/</u>	50 nanoseconds (SA off)
Pseudorange	MEDLL (L1-C/A)	10 cm RMS, C/N ₀ > 44 dBHz, BW = 0.05
Measurement		
Single Channel	L1	3 mm RMS, C/No > 44 dBHz, Loop BW = 3Hz
Phase Accuracy		
Raw Data Availability Rate	MEDLL Almanac data	5 phase and code measurements per second (200 ms) < 15 minutes after reset
Time to First Fix	Aimanac uala	100 seconds (95%) with stabilized internal oscillator.
		15 minutes maximum from start of cold receiver. No initial time, almanac or position required.
Re-acquisition	GPS	5 seconds C/No = 44 dB-Hz, 10 seconds C/No = 38 dB-Hz
	GEO	10 seconds C/No = 44 dB-Hz
Height Measurements		Up to 18,288 metres (60,000 feet) maximum
		[In accordance with export licensing, the card is restricted to less than 60,000 feet.]
		INPUT/OUTPUT DATA INTERFACE
Serial		Baud rates: 300, 1200, 4800, 9600, 19200, 57600, 115200 bps, user selectable
Connector		Default: 9600 bps (COM1 and COM2)
Connector		DE9P
Electrical format		RS-232
		OUTPUT STROBES
VARF		A programmable variable frequency output ranging from 0.15 Hz to 5 MHz, with pulse width from 100 ns to 6.55 ms. This is a normally high, active low pulse. There may be as much as 50 ns jitter on this signal.
1PPS		A one-pulse-per-second Time Sync output. This is a normally high, active low pulse (200 μs for MEDLL) where the falling edge is the reference.
MSR		Measure Output is a 1 or 5 pulses-per-second output, normally high, active low where the pulse width is 200 μs for MEDLL. The falling edge is the receiver's measurement strobe. (Rate is model-dependent.)

STATUS		Indicates a valid GPS position solution is available. A high level indicates a valid solution or that the FIX POSITION command has been set, see <i>Page 26</i> .				
Connector		DE9S				
	The electr	cal specifications of the strobe signals are as follows:				
Output	Voltage	(High) > 2.0 VDC (Low) < 0.55 VDC				
	Minimum load impedance	1 ΚΩ				
		ANTENNA INPUT				
Connector		TNC female				
Frequency		L1(1575.42 MHz),				
Power		2.1 mm plug (10 – 36 VDC) centre positive				
Noise Power Spectral Density		-140 dBm/Hz to -160 dBm/Hz				
Maximum C/N₀		65 dB-Hz				

DEFAULT CHANNEL ASSIGNMENTS – Portable MEDLL RECEIVER


Port	Channel	SV Type	Code	DLL Type	Frame	Nav Type	Symbol Rate	FEC	Sky Search
COM1	0	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	1	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	2	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	3	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	4	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	5	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	6	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	7	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	8	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	9	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	10	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	11	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic

				C	Dr				
Port	Channel	SV Type	Code	DLL Type	Frame	Nav Type	Symbol Rate	FEC	Sky Search
COM1	0	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	1	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	2	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	3	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	4	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	5	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	6	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	7	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	8	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	9	GPS	L1 C/A	MEDLL	GPS	GPS	50	No	Automatic
	10	GEO	L1 C/A	MEDLL	GEO	GEO	500	Yes	Idle
	11	GEO	L1 C/A	MEDLL	GEO	GEO	500	Yes	Idle

B GPS OVERVIEW

The Global Positioning System (GPS) is a satellite system capable of providing independent and highly accurate timing and positioning information. GPS provides 24-hour, all-weather, worldwide coverage. Refer to *Figure 13* for a representation of the GPS satellite orbit arrangement.

GPS SYSTEM DESIGN

The system uses the NAVSTAR (NAVigation Satellite Timing And Ranging) satellites that consist of 24 operational satellites. A minimum of four satellites in view allows the GPSCard to compute its current latitude, longitude, altitude with reference to ellipsoid mean sea level and the GPS system time.

The GPS system design consists of three parts:

- The Space segment
- The Control segment
- The User segment

All these parts operate together to provide accurate three-dimensional positioning, timing and velocity data to users worldwide.

THE SPACE SEGMENT

The space segment is composed of the NAVSTAR GPS satellites. The specified constellation of the system consists of 24 satellites in six orbital planes, inclined 55° from the equator, with four satellites in each plane. The orbital period of each satellite is approximately 12 hours at an altitude of 20,183 km.

The GPS satellite signal identifies the satellite and provides the positioning, timing, ranging data, satellite status and ephemerides (orbit parameters) of the satellite to the receiver. The satellites can be identified either by the Space Vehicle Number (SVN) or the Pseudorandom Code Number (PRN). The PRN is used by the NovAtel GPSCard.

The GPS satellites transmit on two L-band frequencies; one centred at 1575.42 MHz (L1) and the other at 1227.60 MHz (L2). The L1 carrier is modulated by the C/A code (Coarse/Acquisition) and the P-Code (Precision) that is encrypted for military and other authorized users. The L2 carrier is modulated only with the P-Code. Please refer to *Figure 13*, *View of GPS Satellite Orbit Arrangement*, on the previous page, for a representation of the GPS satellite orbit arrangement.

THE CONTROL SEGMENT

The control segment consists of a master control station, five reference stations and three data up-loading stations in locations all around the globe.

The reference stations track and monitor the satellites via their broadcast signals. The broadcast signals contain the ephemeris data of the satellites, the ranging signals, the clock data and the almanac data. These signals are passed to the master control station where the ephemerides are re-computed. The resulting ephemerides corrections and timing corrections are transmitted back to the satellites via the data up-loading stations.

THE USER SEGMENT

The user segment such as the Portable MEDLL receiver, consists of equipment, which tracks and receives the satellite signals. The user equipment must be capable of simultaneously processing the signals from a minimum of four satellites to obtain accurate position, velocity and timing measurements.

C INFORMATION MESSAGES

While operating the Portable MEDLL receiver, there may be additional messages output by the receiver that you may observe. This information is in addition to typical log data as described in this manual, and falls into two categories:

Type 1: Messages that occur as a result of an operational error within the receiver over which you have no control. These appear in typical NovAtel log format.

Type 2: Messages that occur in response to your input. These are not in typical log format.

The following sections describe these messages.

TYPE 1 INFORMATION MESSAGES

As mentioned, Type 1 information messages indicate that there is a problem with the operation of the on-board firmware. To date, the only Type 1 messages in use are the !ERRA and the !MSGA logs.

If you receive the !ERRA message, it may be useful to reload the software using the correct authorization code; see *Table 15, Page 88* for a list of !ERRA message types. Each of these messages causes a "severity fatal" condition to be set, causing the card to be reset. To reload the software, power down the receiver and follow the procedure outlined in *Chapter 4*. Under certain error conditions, the card will reset itself and resolve the difficulty.

If, after verifying that the software has been correctly loaded, and the receiver cannot reset itself to function normally, the receiver requires maintenance.

The !MSGA log would be output if the software is a time-limited version. The log will provide the expiry date of the software. See *Table 16, on Page 89*, for a list of !MSGA message types. Portable MEDLL receivers are not time limited. There will be no expiry date.

!ERRA

[!ERRA type severity error string opt desc *xx [CR][LF]

Field #	Field type	Data Description	Example
1	!ERRA	Log header	!ERRA
2	type	Log type, numbered 0 - 8 (see Table 15, Page 88)	1
3	severity	Only one is defined to date: severity_fatal (number = 0); causes the receiver to be reset	0
4	error string	Error message (see Table 15, Page 88)	Authorization code invalid
5	5 <i>opt desc</i> Optional additional description		
6	6 *xx Checksum		*22
7	[CR][LF]	Sentence terminator	[CR][LF]

Example:

!ERRA,1,0,Authorization Code Invalid,*22[CR][LF]

Table 15 Type 1 !ERRA Messages

Log type	Error String
0 Unknown ERRA Type	
1	Authorization Code Invalid
2	No Authorization Code Found
3	Invalid Expiry In Authorization Code
4	Unable To Read ESN

6	Card Has Stopped Unexpectedly
7	Incorrect Number of Cards Found
8	Software Version Mismatch

!MSGA

!MSGA type message opt desc *xx [CR][LF]

Field #	Field type		Example
1	!MSGA	Log header	!MSGA
2	type	Log type, numbered from 1000 (see Table 16)	1001
3	message	Message (see Table 16)	Authorization Code is Time Limited
4	opt. description	Optional description	Model 3951R expires on 960901
5	*хх	Checksum	*6C
6	[CR][LF]	Sentence terminator	[CR][LF]

Example:

!MSGA,1001,Authorization Code Is Time Limited, Model 3951R Expires on 960901 *6C[CR][LF]

Table 16 Type 1 !MSGA Messages

1	Log type	Message String	
1000 Unknown MSGA Type			
	1001	Authorization Code Is Time Limited	

TYPE 2 INFORMATION MESSAGES

NOTE: Commands referred to in the information messages that do not appear in this manual may be found in a *NovAtel Command Descriptions* manual.

The following is a list of information messages that are generated by the Command Interpreter in the receiver in response to your input. This list is not necessarily complete, but it is the most accurate one available at the time of publication.

Error Message	Meaning
All OK	No errors to report.
Argument Must Be Hexadecimal (0-9,A-F) Pairs	An argument which is not hexadecimal was entered.
Argument Must Be Numeric	An argument which is not numeric was entered.
Authorization Changes Not Available On This Card	An attempt has been made to change the Authorization Code on a card, which is not an OEM card.
Authorization Code Entered Incorrectly	The checksum is incorrect for the Authorization Code. The Authorization Code was most likely entered incorrectly.
Authorization Code Is Invalid	The existing Authorization Code is invalid. Please contact NovAtel for a new Authorization Code.
Can't Change Authorization Code	The existing Authorization Code cannot be changed. Please contact NovAtel for assistance.
Clock Model not set TM1A rejected	The clock model status in a \$TM1A command is invalid. The \$TM1A command is rejected when the clock model has not been set.
CLOCK_ADJUST Command Not Available On This Model	The CLOCKADJUST command is not available on this model.
Complete Almanac not received yet - try again later	The almanac cannot be saved because a complete almanac has not yet been received. A SAVEALMA command should be performed at a later time when a complete almanac has been received.
Data Too Large To Save To NVM	The configuration data being saved is too large.
Differential Corrections Not Available On This Model	This model does not have the ability to send or receive differential corrections.
EXTERNALCLOCK Command Not Available On This Model	The EXTERNALCLOCK command is not available on this model.
FREQUENCY_OUT Command Not Available On This Model	The FREQUENCY_OUT command is not available on this model.
FROM port name too LONG	The FROM port name in a SETNAV command is too long.
Invalid \$ALMA Checksum	The checksum of a \$ALMA command is invalid.
Invalid \$IONA Checksum	The checksum of a \$IONA command is invalid.
Invalid \$REPA Checksum	The checksum of a \$REPA command is invalid.
Invalid \$TM1A Checksum	The checksum of a \$TM1A command is invalid.
Invalid \$UTCA Checksum	The checksum of a \$UTCA command is invalid.
Invalid ADJUSTCLOCK Option	An invalid CLOCKADJUST switch has been entered.
Invalid Baud Rate	The baud rate in a COM1 command is invalid.
Invalid Code Smoothing Constant	The code smoothing constant of the CSMOOTH command is invalid.
Invalid Channel Number	An invalid channel number has been entered in a command such as ASSIGN.
Invalid Command CRC	The received command has an invalid checksum.
Invalid Command Name	An invalid command name has been received.
Invalid Command Option	One or more arguments of a command are invalid.
Invalid Datatype	The data type in an ACCEPT command is invalid.
Invalid Datum Offset	The datum offset in a USERDATUM command is invalid.
Invalid DATUM Option	An option in a DATUM command is invalid.
Invalid Datum Rotation	The datum rotation angle in a USERDATUM command is invalid.
Invalid Degree Field	An invalid degree field has been entered in a command such as FIX POSITION.
Invalid Doppler	An invalid Doppler has been entered in an ASSIGN command.

Invalid Doppler Window	An invalid Doppler window has been entered in an ASSIGN command.
Invalid DynAMICS Option	The option in a DYNAMICS command is invalid.
Invalid Echo Option	The echo option in a COM1 command is invalid.
Invalid Elevation Cutoff Angle	The elevation cut-off angle in an ECUTOFF command is invalid.
Invalid EXTERNALCLOCK Option	An invalid external clock was entered in the EXTERNALCLOCK command.
•	An invalid external clock was entered in the EXTERNALCLOCK command.
Invalid EXTERNALCLOCK USER Argument(s)	
Invalid FIX Option	An option other than height, position or velocity was specified in a FIX command.
Invalid Flattening	The flattening in a USERDATUM command is invalid.
Invalid Handshake Option	The handshake option in a COM1 command is invalid.
Invalid HEALTH Override	An invalid health has been entered in a SETHEALTH or FIX command.
Invalid Height	The height in a FIX HEIGHT command is invalid.
Invalid Logger Datatype	An invalid log has been specified in a LOG/UNLOG command.
Invalid Logger Offset	An invalid offset has been specified in a LOG command.
Invalid Logger Period	An invalid period has been specified in a LOG command.
Invalid Logger Port Option	An invalid port number has been specified in a LOG/UNLOG command.
Invalid Logger Trigger	An invalid trigger has been specified in a LOG command.
Invalid Number of \$ALMA Arguments	The number of arguments in a \$ALMA command is invalid.
Invalid Number of \$IONA Arguments	The number of arguments in a \$IONA command is invalid.
Invalid Number of \$REPA Arguments	The number of arguments in a \$REPA command is invalid.
Invalid Number of \$TM1A Arguments	The number of arguments in a \$TM1A command is invalid.
Invalid Number of \$UTCA Arguments	The number of arguments in a \$UTCA command is invalid.
Invalid Number of Arguments	A command has been received which has an invalid number of arguments.
Invalid Number of Databits	The number of data bits in a COM1 command is invalid.
Invalid Number of StopBits	The number of stop bits in a COM1 command is invalid.
Invalid Parity Option	The parity in a COM1 command is invalid.
Invalid Port	The port in a SEND command is invalid.
Invalid Port number	The port number in an ACCEPT command is invalid.
Invalid RTCA station Name (\XXXX\)	The RTCA station name in a FIX POSITION message is invalid.
Invalid Satellite Number	An invalid satellite number has been entered in an ASSIGN command.
Invalid Scaling	The scale value in a USERDATUM command is invalid.
Invalid Seconds Into Week in TM1A	The time in a \$TM1A command is invalid.
Invalid SemiMajor Axis	The semi-major axis in a USERDATUM command is invalid.
Invalid Symbol Period 1,2,4,5,10,20	The symbol period is invalid for an ASSIGN on a pseudolite channel.
Invalid Token	This error should never occur. If it does, please contact NovAtel.
Invalid Week Number in TM1A	The week in a \$TM1A command is invalid.
MET Command Not Available On This Model	The MET command is not available on this model.
Model Invalid	The Authorization Code has an invalid Model. Please contact NovAtel for help.
RT20 Logs Not Available On This Model	This model is not able to send or receive RT20 differential corrections.
RTCM9 Logs Not Available On This Model	This model does not have the ability to send or receive RTCM9 logs.
SETCLOCK disabled TM1A rejected	The \$TM1A command is rejected because the user has not enabled clock synchronization using the SETCLOCK command.
User Defined DATUM Not Set	This error should not occur. By default the user defined DATUM is set to WGS-84. If you get this error message, please contact NovAtel GPS .
Valid Option but Missing Process	This message indicates an error in the software. A command option is valid but software cannot process it

Example:

Argument Must Be Numeric

D ACRONYMS

1PPS	One Pulse Per Second
A	Ampere(s)
A/D	Analog-to-Digital
ADR	Accumulated Doppler Range
AGC	Automatic Gain Control
ANT	Antenna
ASCII	American Standard Code for Information Interchange
ASIC	Application Specific Integrated Circuits
BIST	Built-In-Self-Test
BIT	Built-In Test
bps	Bits per Second
C/A Code	Coarse/Acquisition Code
CEP	Circular Error Probable
CPU	Central Processing Unit
CR	Carriage Return
CRC	Cyclic Redundancy Check
CTS	Clear To Send
dB	Decibel
DC	Direct Current
DCD	Data Carrier Detected
DGPS	Differential Global Positioning System
DLL	Delay Lock Loop
DOP	Dilution Of Precision
DSP	Digital Signal Processor
DSR	Data Set Ready
DTR	Data Terminal Ready
EGNOS	European Geostationary Navigation Overlay Service
ESD	Electrostatic Discharge
FEC	Forward Error Correction
GDOP	Geometric Dilution Of Precision
GEO	Geostationary Satellite
GMT	Greenwich Mean Time
GND	Ground
GPS	Global Positioning System
hex	Hexadecimal
Hz	Hertz
ICD	Interface Control Document
I/O	Input/Output
IODE	Issue of Data (Ephemeris)
L1	1575.42 MHz GPS carrier frequency, C/A and P-Code
L2	1227.60 MHz GPS carrier frequency, P-Code
LED	Light-Emitting Diode

Appendix D

LF	Line Feed
LNA	Low Noise Amplifier
MAT	Multipath Assessment Tool
MCC	Master Control Centres
MET	Multipath Elimination Technology
MEDLL	Multipath Estimating Delay Lock Loop
MHz	Megahertz or one million Hertz
MINOS	Multiple Independent Nomadic Stargazer
MKI	Mark In
MOPS	Minimum Operational Performance Standards
MSL	Mean sea level
MSR	Measurement
NAVSTAR	NAVigation Satellite Timing And Ranging (synonymous with GPS)
NC	Not Connected
NLES	Navigation Land Earth Stations
ns	nanosecond
OCXO	Oven Controlled Crystal Oscillator
OEM	Original Equipment Manufacturer
PC	Personal Computer
P-Code	Precise Code
PLL	Phase Lock Loop
PPS	Pulse Per Second
PRN	Pseudo Random Noise number
RAM RIMS RF ROM RT RTCA RTCA RTCM RTS RXD	Random Access Memory Ranging and Integrity Monitoring Stations Radio Frequency Read Only Memory Receive Time Radio Technical Commission for Aviation Services Radio Technical Commission for Maritime Services Request To Send Received Data
SA	Selective Availability
SPS	Standard Positioning Service
SV	Space Vehicle
SVN	Space Vehicle Number
TCXO	Temperature Controlled Crystal Oscillator
TT	Transmit Time
TXD	Transmitted Data
UART	Universal Asynchronous Receiver Transmitter
UTC	Universal Time Coordinated
V	Volt(s)
WGS	World Geodetic System

INDEX

1

1PPS, 80

Α

accumulated Doppler, 67 almanac, 17, 41, 88 amplitude, 58, 59 antenna, 7, 26, 60 ASCII format, 37, 38 azimuth, 76

В

batch file, 13 binary, 37, 59 broadcast, 88

С

C/A code, 88 C/N0, 67 carrier phase, 67 case sensitive, 15 channel, 67, 82, 83 configuration, 23 state, 67, 82, 83 tracking status, 58 checksum, 37 clock, 21, 45, 49, 80, 88 COM1, 10, 15, 22, 28 comma, 15 communications settings, 9 constellation, 88 control segment, 87, 88 correlator, 58

D

D/U ratio, 59 datum, 62, 63 delay, 58 Doppler, 67

Ε

echo response, 11 elevation, 25, 39, 76, 82, 83 ellipsoid, 61, 62, 63 ephemeris, 88

F

front panel, 6, 10

G

G2 delay, 20 GDOP, 49 geodetic datum, 61 GPS time, 38

Η

HDOP, 49 health, 17, 41 HTDOP, 49

I

idle time, 37 in phase residual, 58 ionospheric, 41, 56, 81

L

latitude, 87 L-band, 88 locktime, 67 longitude, 87

Μ

master control station, 88 mean sea level, 87 MEDLL, 8, 58, 59 MPM log (multipath meter), 58 multipath information, 58

Ν

navigation, 87 NAVSTAR, 87, 88 non-volatile memory, 9

0

orbit period, 88 output pulse, 27

Ρ

PDOP, 49 phase, 58 lock, 67, 82, 83 port antenna, 7 power, 7 serial, 6, 9, 10, 11 position constraints, 34 power antenna, 86 input, 7, 85 MEDLL, 3 supply, 4, 9 processing, 88

Q

quadrature phase residual, 58

R

reject code, 76 residuals, 58, 59, 76

S

self-test, 67 space, 15 segment, 87, 88 status MEDLL, 58, 59 receiver, 10, 70, 74 strobe lines, 8 subframes, 17, 41

Т

TDOP, 49 time conventions, 38 GPS, viii of 1PPS, 80 receive and transmit, 10 receiver, 45 smoothing, 24 start-up, 9 tracking status, 67 transformation, 61 trigger option, 58 Type 1 information messages, 89 Type 2 information messages, 91

U

upgrading, 12 user segment, 87, 88 UTC, 38, 41, 80, 81

V

VARF, 27 velocity, 87, 88

NovAtel Inc. 1120 - 68 Avenue N.E. Calgary, Alberta, Canada T2E 8S5

GPS Hotline: 1-403-295-4900 GPS Fax: 1-403-295-4901 E-mail: <u>mailto:support@novatel.ca</u> Web site: <u>http://www.novatel.ca</u>/ Recyclable

Printed in Canada on recycled paper